Comparative Evaluation of Power Requirements for Fixed, Rotary and Flapping Wings of Micro Air Vehicles

2002 ◽  
Author(s):  
Krzysztof Sibilski ◽  
Jozef Pietrucha
2009 ◽  
Author(s):  
Christopher Kroninger ◽  
Jeffrey Pulskamp ◽  
Jessica Bronson ◽  
Ronald G. Polcawich ◽  
Eric Wetzel

2005 ◽  
Vol 127 (4) ◽  
pp. 817-824 ◽  
Author(s):  
Rafał Z˙bikowski ◽  
Cezary Galin´ski ◽  
Christopher B. Pedersen

This paper describes the concept of a four-bar linkage mechanism for flapping wing micro air vehicles and outlines its design, implementation, and testing. Micro air vehicles (MAVs) are defined as flying vehicles ca. 150 mm in size (handheld), weighing 50–100 g, and are developed to reconnoiter in confined spaces (inside buildings, tunnels, etc.). For this application, insectlike flapping wings are an attractive solution and, hence, the need to realize the functionality of insect flight by engineering means. Insects fly by oscillating (plunging) and rotating (pitching) their wings through large angles, while sweeping them forward and backward. During this motion, the wing tip approximately traces a figure eight and the wing changes the angle of attack (pitching) significantly. The aim of the work described here was to design and build an insectlike flapping mechanism on a 150 mm scale. The main purpose was not only to construct a test bed for aeromechanical research on hover in this mode of flight, but also to provide a precursor design for a future flapping-wing MAV. The mechanical realization was to be based on a four-bar linkage combined with a spatial articulation. Two instances of idealized figure eights were considered: (i) Bernoulli’s lemniscate and (ii) Watt’s sextic. The former was found theoretically attractive, but impractical, while the latter was both theoretically and practically feasible. This led to a combination of Watt’s straight-line mechanism with a drive train utilizing a Geneva wheel and a spatial articulation. The actual design, implementation, and testing of this concept are briefly described at the end of the paper.


Author(s):  
Miguel R. Visbal

Unsteady low-Reynolds-number flows are of importance in understanding the flight performance of natural flyers, as well as in the design of small unmanned air vehicles and micro air vehicles [1,2]. The imposed motion of flapping wings or the large excursions in effective angle of attack during gust encounters may induce the formation of dynamic-stall-like vortices [3–10] whose evolution and interaction with the aerodynamic surfaces impact both flight stability and performance.


AIAA Journal ◽  
2008 ◽  
Vol 46 (9) ◽  
pp. 2115-2135 ◽  
Author(s):  
Beerinder Singh ◽  
Inderjit Chopra

2010 ◽  
Author(s):  
Christopher Kroninger ◽  
Jeffrey Pulskamp ◽  
Ronald G. Polcawich ◽  
Eric Wetzel

Sign in / Sign up

Export Citation Format

Share Document