A Parallel hp-Multigrid Solver for Three-Dimensional Discontinuous Galerkin Discretizations of the Euler Equations

Author(s):  
Cristian Nastase ◽  
Dimitri Mavriplis
2006 ◽  
Vol 14 (04) ◽  
pp. 445-467 ◽  
Author(s):  
MARC BERNACKI ◽  
SERGE PIPERNO

We present in this paper a time-domain discontinuous Galerkin dissipation-free method for the transient solution of the three-dimensional linearized Euler equations around a steady-state solution. In the general context of a nonuniform supporting flow, we prove, using the well-known symmetrization of Euler equations, that some aeroacoustic energy satisfies a balance equation with source term at the continuous level, and that our numerical framework satisfies an equivalent balance equation at the discrete level and is genuinely dissipation-free. In the case of ℙ1 Lagrange basis functions and tetrahedral unstructured meshes, a parallel implementation of the method has been developed, based on message passing and mesh partitioning. Three-dimensional numerical results confirm the theoretical properties of the method. They include test-cases where Kelvin–Helmholtz instabilities appear.


1989 ◽  
Author(s):  
N. KROLL ◽  
C. ROSSOW ◽  
S. SCHERR ◽  
J. SCHOENE ◽  
G. WICHMANN

2003 ◽  
Vol 13 (10) ◽  
pp. 1413-1436 ◽  
Author(s):  
D. Schötzau ◽  
C. Schwab ◽  
A. Toselli

We consider stabilized mixed hp-discontinuous Galerkin methods for the discretization of the Stokes problem in three-dimensional polyhedral domains. The methods are stabilized with a term penalizing the pressure jumps. For this approach it is shown that ℚk-ℚk and ℚk-ℚk-1 elements satisfy a generalized inf–sup condition on geometric edge and boundary layer meshes that are refined anisotropically and non quasi-uniformly towards faces, edges, and corners. The discrete inf–sup constant is proven to be independent of the aspect ratios of the anisotropic elements and to decrease as k-1/2 with the approximation order. We also show that the generalized inf–sup condition leads to a global stability result in a suitable energy norm.


Sign in / Sign up

Export Citation Format

Share Document