Cylindrical Multiple Target Surface Roughness Effects On Impingement Jet Array Surface Heat Transfer

Author(s):  
Zhong Ren ◽  
Phillip M. Ligrani
2019 ◽  
Vol 26 (1) ◽  
pp. 15-35 ◽  
Author(s):  
Phillip Ligrani ◽  
Patrick McInturff ◽  
Masaaki Suzuki ◽  
Chiyuki Nakamata

Author(s):  
W. Buzzard ◽  
Z. Ren ◽  
P. M. Ligrani ◽  
C. Nakamata ◽  
S. Ueguchi

The present investigation considers the effects of special roughness patterns on impingement target surfaces to improve the effectiveness and surface heat transfer augmentation levels of impingement jet array cooling. This investigation utilizes various sizes, distributions, shapes, and patterns of surface roughness elements for impingement cooling augmentation. The surface roughness shapes considered here are rectangle and triangle, in combination with larger rectangular pins. Configurations considered include: (i) arrays of small rectangular roughness, (ii) arrays of small triangle roughness, (iii) combinations of small rectangle roughness and large pins together, and (iv) combinations of small triangle roughness and large pins together. Tests are performed at impingement jet Reynolds numbers of 900, 1500, 5000, and 11000. Local and overall impingement cooling performance depends upon the shape of the roughness elements, as well as upon the jet Reynolds number. Depending upon the magnitude of jet Reynolds number, different behavior and trends are observed for the arrays of small rectangle roughness, compared with arrays of small triangle roughness. These differences are related to the abilities of the two different roughness shapes to generate different distributions of local mixing and vorticity at different length and time scales. Overall, results demonstrate the remarkable ability of target surface roughness to produce increased surface heat transfer augmentation levels of impingement jet array cooling, relative to target surfaces which are smooth.


Author(s):  
W. Buzzard ◽  
Z. Ren ◽  
P. Ligrani ◽  
C. Nakamata ◽  
S. Ueguchi

The present investigation considers the effects of special roughness patterns on impingement target surfaces to improve the effectiveness and surface heat transfer augmentation levels of impingement jet array cooling. This investigation utilizes various sizes, distributions, shapes, and patterns of surface roughness elements for impingement cooling augmentation. The surface roughness shape considered here is rectangle, in combination with larger rectangular pins. Combinations of small rectangle roughness and large pins are considered together, along with arrays of small rectangular roughness alone. Tests are performed at impingement jet Reynolds numbers of 900, 1500, 5000, and 11000. Local and overall impingement cooling performance depends upon the pattern, distribution, arrangement, and height of the roughness elements, as well as upon the jet Reynolds number. Depending upon the magnitude of jet Reynolds number, different behavior and trends are observed for the small rectangle roughness and large pins together, compared with arrays of small rectangular roughness alone. Overall, results demonstrate the remarkable ability of target surface roughness to produce increased surface heat transfer augmentation levels of impingement jet array cooling, relative to target surfaces which are smooth.


2017 ◽  
Vol 31 (2) ◽  
pp. 346-357 ◽  
Author(s):  
Zhong Ren ◽  
Warren C. Buzzard ◽  
Phillip M. Ligrani ◽  
Chiyuki Nakamata ◽  
Satoshi Ueguchi

Author(s):  
Brian C. Y. Cheong ◽  
Peter T. Ireland ◽  
John P. C. W. Ling ◽  
Shirley Ashforth-Frost

The research reported in this paper has measured in detail the near wall hydrodynamic and thermal characteristics of a confined single impinging jet in crossflow. To the authors’ knowledge, the work is unique in that the flow and thermal fields have been linked to the local surface heat transfer coefficients, which were measured at high resolution. The near wall velocity, turbulence, temperature and temperature fluctuation distributions of the jet were measured using hotwire anemometry and cold-wire thermometry. The target surface heat transfer coefficients were determined using the transient liquid crystal method. The multiple colour play coating enabled both the heat transfer coefficient and the adiabatic wall temperature distributions to be measured. The turbulent jet discharged with uniform exit velocity and temperature profiles at a Reynolds numbers of 20 000 and 40 000. The jet was subject to a crossflow at jet-to-crossflow velocity ratios of 1, 2, 3, 4 and 5. Two nozzle-to-plate spacings of 1.5d and 3d were examined. The results show that impinging jets in crossflow at z/d = 1.5 are significantly more intact at the target surface than jets with z/d = 3. As a result, the surface heat transfer rates beneath a jet in crossflow at the closer spacing are consistently higher. The results would provide excellent test cases for CFD works of similar flow configurations. The results are compared to related data in the literature. In addition, the driving gas temperature measured with the liquid crystals is compared to the near wall thermal field measured with the cold-wire.


Author(s):  
Patrick McInturff ◽  
Masaaki Suzuki ◽  
Phil Ligrani ◽  
Chiyuki Nakamata ◽  
Dae Hee Lee

Author(s):  
Warren C. Buzzard ◽  
Zhong Ren ◽  
Phillip M. Ligrani ◽  
Chiyuki Nakamata ◽  
Satoshi Ueguchi

Author(s):  
G. L. Peacock ◽  
S. J. Thorpe

An experimental investigation has been conducted into the use of a combined impingement-pedestal cooling geometry to improve uniformity of surface heat transfer coefficient over traditional combustor liner impingement arrays. Various pedestal arrangements have been investigated by altering the height-to-diameter (H/D) and pitch-to-diameter (P/D) ratios and measurements have been made over a range of impingement jet Reynolds numbers between ∼20 and 40×103. The surface heat transfer coefficient has been determined using a transient liquid crystal thermography measurement technique and the data presented in terms of Nusselt number. A ‘shielded impingement’ concept has also been defined featuring full-height pedestals positioned upstream of each impingement jet and arranged to shield the impingement jets from the developing cross-flow. Aerodynamic measurements have also been made to evaluate the influence of changes to the pedestal geometry on the pressure drop incurred across the different cooling patterns. The analysis indicates superior heat transfer performance can be achieved for the shielded impingement arrangements, with the greatest improvement over equivalent geometries displayed towards the rear of the cooling channel.


Sign in / Sign up

Export Citation Format

Share Document