impingement jet
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 47)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yunze Xu ◽  
Qiliang Zhang ◽  
Qipiao Zhou ◽  
Shan Gao ◽  
Bin Wang ◽  
...  

AbstractIn this work, flow accelerated corrosion (FAC) and erosion−corrosion of marine carbon steel in natural seawater were electrochemically studied using a submerged impingement jet system. Results show that the formation of a relatively compact rust layer in flowing natural seawater would lead to the FAC pattern change from ‘flow marks’ to pits. The increase of the flow velocity was found to have a negligible influence on the FAC rate at velocities of 5−8 m s−1. The synergy of mechanical erosion and electrochemical corrosion is the main contributor to the total steel loss under erosion−corrosion. The increase of the sand impact energy could induce the pitting damage and accelerate the steel degradation. The accumulation of the rust inside the pits could facilitate the longitudinal growth of the pits, however, the accumulated rusts retard the erosion of the pit bottom. The erosion and corrosion could work together to cause the steel peeling at the pit boundary. The steel degradation would gradually change from corrosion-dominated to erosion-dominated along with the impact energy increasing.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012037
Author(s):  
P K Kanin ◽  
T A Gubanova ◽  
A R Zabirov ◽  
V V Yagov

Abstract This paper presents new results of experiments on spherical sample cooling with submerged impingement jet in subcooled water-alcohol mixtures. The influence of the ethanol concentration on the occurrence of intensive boiling regime is detected. Experiments are carried out on a stainless-steel sample in a water-ethanol mixture, in a wide range of concentrations and temperatures. The result includes an increase of the heat transfer intensity at exposure of the submerged impingement jet. The intensive boiling regime is detected with a higher ethanol content compared to experiments in a calm liquid.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4757
Author(s):  
Zhong Ren ◽  
Xiaoyu Yang ◽  
Xunfeng Lu ◽  
Xueying Li ◽  
Jing Ren

With the development in additive manufacturing, the use of surface treatments for gas turbine design applications has greatly expanded. An experimental investigation of the pressure loss and heat transfer characteristics within impingement jet arrays with arrays of target surface micro cooling units is presented. The discharge coefficient and Nusselt number are measured and determined for an evaluation of the pressure loss of the flow system and heat transfer level, respectively. Considered are effects of impingement jet Reynolds number ranging from 1000 to 15,000 and micro cooling units (square pin fin) height (h) with associated values of 0.01, 0.02, 0.05, 0.2, and 0.4 D, where D is the impingement hole diameter. Presented are variations of Nusselt number, and Nusselt number ratio, discharge coefficient, discharge coefficient ratio, discharge coefficient correlation. Depending upon the micro cooling unit height, discharge coefficient ratios slightly decrease with height, and the ratio values generally remain unit value (1.0). When Rej = 1000 and 2500 for several cooling units height values, discharge coefficient ratios show the pressure loss decreases about 2–18% and 3–6%, respectively, when compared to the data of a baseline smooth target surface plate. The observed phenomenon is due to the effects of flow blockage of micro cooing units, local flow separation, and near-wall viscous sublayer reattachment. Results also show that heat transfer levels increase 20–300% for some of the tested toughened target surface plates when compared to smooth target surface plates. The heat transfer level enhancement is because of an increase in thermal transport and near-wall mixing, as well as the increased wetted area. In addition, micro cooling units elements break the viscous sublayer and cause greater turbulence intensity when compared to the smooth target surface. Overall, results demonstrate that the target surface micro cooling units do not result in a visible increment in pressure loss and reduce pressure loss of the flow system for some of the tested patterns. Moreover, results show the significant ability of micro cooling units to enhance the surface heat transfer capability of impingement cooling relative to smooth target surfaces.


Author(s):  
Hyder H. Balla ◽  
Alaa Liaq Hashem ◽  
Zaid S. Kareem ◽  
Ammar F. Abdulwahid

Author(s):  
Yue Yang ◽  
Junkui Mao ◽  
Feilong Wang

Abstract In the jets array cooling system of the gas turbine, the downstream jets will be deflected by the crossflow and the heat transfer in the downstream will be suppressed. In this paper, the rectangular vortex generators are arranged in the jet arrays to enhance the jet impingement heat transfer. Through the numerical simulations, the configuration of rectangular vortex generators (Common-flow-down CFD and Common-flow-up CFU) and the relative position (l2) between the impingements and the rectangular vortex generators are studied. The results show that both of configurations are beneficial to the suppression of the crossflow and enhance the heat transfer in the downstream. The maximum enhancement of the whole regional average Nusselt numbers in CFD-VGs configuration can reach up to 9.09% with lower than 5% increase of the pressure loss and that in CFU-VGs configuration can reach up to 10.8% with lower than 4.8% increase of the pressure loss. From the perspective of the whole regional average Nusselt numbers and the overall thermal efficiency, the CFD-VGs with l2 = 0 has the best performance. However, from the perspective of the whole regional average Nusselt numbers, the CFU-VGs with l2 = 0 has the best performance, while from the perspective of the overall thermal efficiency, the CFU-VGs with l2 = 3 has the best performance.


2021 ◽  
Author(s):  
Christopher P. Bowen ◽  
Jeffrey P. Bons

Abstract A framework for performing mesh morphing in a conjugate simulation in the commercial Computational Fluid Dynamics (CFD) software ANSYS Fluent is presented and validated. A procedure for morphing both the fluid and solid domains to simulate the protrusion of deposit into the fluid while concurrently altering and adding to the solid regions is detailed. The ability to delineate between the original metal sections of the solid and the morphed regions which represent deposit characteristics is demonstrated. The validity and predictive capability of the process is tested through simulation of a canonical impingement jet. A single over-sized impingement jet (6.35 mm) at 894 K and an average flow velocity of 56.5 m/s is used to heat a nickel-alloy target plate. One gram of 0-5 μm Arizona Road Dust (ARD) is delivered to the target and a Particle Shadow Velocimetry (PSV) technique is used to capture the transient growth of the deposit structure on the target. Thermal infrared images are taken on the backside of the target and synchronized with the PSV images. The experiment is modeled computationally using the Fluent Discrete Phase Model (DPM) and the Ohio State University (OSU) Deposition Model for sticking prediction. The target is morphed according to the particulate volume prediction. The deposit regions are assigned an effective conductivity (keff) representative of porous deposit, and the fluid and thermal computations are reconverged. 10 mesh morphing iterations are performed accounting for the first half of the experiment. The morphed deposit volume and height are compared to the experiment and show reasonable agreement. The backside target temperatures are also compared, and the simulations show the ability to predict the reduction in temperature that occurs as the growing deposit insulates the metal surface. It is demonstrated that the assignment of unique thermal conductivities to the deposit and metal cells within the solid is critical. With a more robust and accurate implementation of the deposit keff, this conjugate mesh morphing framework shows potential as a tool for predicting the thermal impact of deposition.


2021 ◽  
Vol 163 ◽  
pp. 106832
Author(s):  
Jiasen Wang ◽  
Hongwu Deng ◽  
Zhi Tao ◽  
Yang Li ◽  
Jianqin Zhu

Sign in / Sign up

Export Citation Format

Share Document