scholarly journals A Mixed Integer Efficient Global Optimization Algorithm with Multiple Infill Strategy - Applied to a Wing Topology Optimization Problem

Author(s):  
Satadru Roy ◽  
William A. Crossley ◽  
Bret Stanford ◽  
Kenneth T. Moore ◽  
Justin S. Gray
2008 ◽  
Vol 33-37 ◽  
pp. 1407-1412
Author(s):  
Ying Hui Lu ◽  
Shui Lin Wang ◽  
Hao Jiang ◽  
Xiu Run Ge

In geotechnical engineering, based on the theory of inverse analysis of displacement, the problem for identification of material parameters can be transformed into an optimization problem. Commonly, because of the non-linear relationship between the identified parameters and the displacement, the objective function bears the multimodal characteristic in the variable space. So to solve better the multimodal characteristic in the non-linear inverse analysis, a new global optimization algorithm, which integrates the dynamic descent algorithm and the modified BFGS (Brogden-Fletcher-Goldfrab-Shanno) algorithm, is proposed. Five typical multimodal functions in the variable space are tested to prove that the new proposed algorithm can quickly converge to the best point with few function evaluations. In the practical application, the new algorithm is employed to identify the Young’s modulus of four different materials. The results of the identification further show that the new proposed algorithm is a very highly efficient and robust one.


2021 ◽  
Vol 143 (2) ◽  
Author(s):  
E. Denimal ◽  
F. El Haddad ◽  
C. Wong ◽  
L. Salles

Abstract To limit the risk of high cycle fatigue, underplatform dampers (UDPs) are traditionally used in aircraft engines to control the level of vibration. Many studies demonstrate the impact of the geometry of the damper on its efficiency, thus the consideration of topological optimization (TO) to find the best layout of the damper seems natural. Because of the nonlinear behavior of the structure due to the friction contact interface, classical methods of TO are not usable. This study proposes to optimize the layout of an UDP to reduce the level of nonlinear vibrations computed with the multiharmonic balance method (MHBM). The approach of TO employed is based on the moving morphable components (MMC) framework together with the Kriging and the efficient global optimization algorithm to solve the optimization problem. The results show that the level of vibration of the structure can be reduced to 30% and allow for the identification of different efficient geometries.


Sign in / Sign up

Export Citation Format

Share Document