Numerical method for Large Eddy Simulation of compressible isotropic turbulence

Author(s):  
Badal Modi ◽  
Shankar Ghosh
2010 ◽  
Vol 2 (2) ◽  
pp. 237-249 ◽  
Author(s):  
M. A. Uddin ◽  
C. Kato ◽  
N. Oshima ◽  
M. Tanahashi ◽  
T. Miyauchi

Large eddy simulation (LES) in homogeneous isotropic turbulence is performed by using the Finite element method (FEM) and Finite volume vethod (FVM) and the results are compared to show the performance of FEM and FVM numerical solvers. The validation tests are done by using the standard Smagorinsky model (SSM) and dynamic Smagorinsky model (DSM) for subgrid-scale modeling. LES is performed on a uniformly distributed 643 grids and the Reynolds number is low enough that the computational grid is capable of resolving all the turbulence scales. The LES results are compared with those from direct numerical simulation (DNS) which is calculated by a spectral method in order to assess its spectral accuracy. It is shown that the performance of FEM results is better than FVM results in this simulation. It is also shown that DSM performs better than SSM for both FEM and FVM simulations and it gives good agreement with DNS results in terms of both spatial spectra and decay of the turbulence statistics. Visualization of second invariant, Q, in LES data for both FEM and FVM reveals the existence of distinct, coherent, and tube-like vortical structures somewhat similar to those found in instantaneous flow field computed by the DNS. Keywords: Large eddy simulation; Validation; Smagorinsky model; Dynamic Smagorinsky model; Tube-like vortical structure; Homogeneous isotropic turbulence. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.v2i2.2582              J. Sci. Res. 2 (2), 237-249 (2010) 


Author(s):  
Makoto Tsubokura ◽  
Prasanjit Das ◽  
Tomofuyu Matsuuki ◽  
Takuji Nakashima

Unsteady aerodynamic forces acting on a full-scale heavy duty truck were investigated using a large-eddy simulation technique. The numerical method adopted was first validated on a static condition measured at the DNW German-Dutch wind tunnels. After the correction of the blockage ratio in the wind tunnel, the drag coefficient obtained by our numerical method showed good agreement with the experimental data within the errors of less than 5%. Effect of an air deflector mounted on the top of a cabin was also discussed. Then the method was applied to non-stationary conditions in which the truck was subjected to ambient perturbation of approaching flow. The perturbation of the flow is a model of atmospheric turbulence and sinusoidal crosswind velocity profiles were imposed on the uniform incoming flow with its wavelength comparable to the vehicle length. As a result, it was confirmed that when the wavelength of the crosswind is close to the vehicle length, averaged drag increases by more than 10% and down-force decreases by about 60%, compared with the case without perturbation.


Author(s):  
Fernando F. Grinstein

Abstract Accurate predictions with quantifiable uncertainties are essential to many practical turbulent flow applications exhibiting extreme geometrical complexity and broad ranges of length and time scales. Under-resolved computer simulations are typically unavoidable in such applications, and implicit large-eddy simulation (ILES) often becomes the effective strategy. We focus on ILES initialized with well-characterized 2563 homogeneous isotropic turbulence datasets generated with direct numerical simulation (DNS). ILES is based on the LANL xRAGE code, and solutions are examined as function of resolution for 643, 1283, 2563, and 5123 grids. The ILES performance of new directionally-unsplit high-order numerical hydrodynamics algorithms in xRAGE is examined. Compared to the initial 2563 DNS, we find longer inertial subranges and higher turbulence Re for directional-split 2563 & 5123 xRAGE — attributed to having linked DNS (Navier-Stokes based) solutions to nominally inviscid (higher Re) Euler based ILES solutions. Alternatively — for fixed resolution, we find that significantly higher simulated turbulence Re can be achieved with unsplit (vs. split) discretizations.


Sign in / Sign up

Export Citation Format

Share Document