flow pump
Recently Published Documents


TOTAL DOCUMENTS

988
(FIVE YEARS 180)

H-INDEX

36
(FIVE YEARS 7)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 56
Author(s):  
Yanjun Li ◽  
Qixu Lin ◽  
Fan Meng ◽  
Yunhao Zheng ◽  
Xiaotian Xu

In order to study the influence of tip clearance on the performance and energy dissipation of the axial-flow pump and the axial-flow pump as a turbine, and find the location of high dissipation rate, this study took an axial-flow pump model as its research object and designed four tip radial clearance schemes (0, 0.2, 1 and 2 mm). The unsteady calculation simulation of each tip clearance scheme was carried out based on CFD technology. The calculated results were compared with the experimental results, and the simulation results were analyzed using entropy production analysis theory. The results showed that, under both an axial-flow pump and axial-flow pump as turbine operating conditions, increasing the blade tip clearance led to a decrease in hydraulic performance. Compared with the 0 mm clearance, the maximum decreases in pump efficiency, head and shaft power under 2 mm tip clearance were 15.3%, 25.7% and 12.3% under the pump condition, and 12.7%, 18.5% and 28.8% under the turbine condition, respectively. Under the axial-flow pump operating condition, the change in blade tip clearance had a great influence on the total dissipation of the impeller, guide vane and outlet passage, and the maximum variation under the flow rate of 1.0 was 53.9%, 32.1% and 54.2%, respectively. Under the axial-flow pump as a turbine operating condition, the change in blade tip clearance had a great influence on the total dissipation of the impeller and outlet passage, the maximum variation under the flow rate of 1.0 was 22.7% and 17.4%, respectively. Under the design flow rate condition, with the increase in tip clearance, the dissipation rate of the blade surface showed an increasing trend under both the axial-flow pump and axial-flow pump as turbine operating conditions, and areas of high dissipation rate were generated at the rim and clearance.


BIOCELL ◽  
2022 ◽  
Vol 46 (5) ◽  
pp. 1139-1150
Author(s):  
RAFIQ AHMED BHAT ◽  
SYED MANZOOR ALI ◽  
YOOSUF ALI ASHRAF MUHAMMAD HUSSENBOCUS ◽  
AKANKSHA RATHI ◽  
JAVAID AKHTER BHAT ◽  
...  

Author(s):  
Mengcheng Wang ◽  
Yanjun Li ◽  
Jianping Yuan ◽  
Shouqi Yuan
Keyword(s):  

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 365
Author(s):  
Rong Lu ◽  
Jianping Yuan ◽  
Guangjuan Wei ◽  
Yong Zhang ◽  
Xiaohui Lei ◽  
...  

Mixed flow pumps driven by hydraulic motors have been widely used in drainage in recent years, especially in emergency pump trucks. Limited by the power of the truck engine, its operating efficiency is one of the key factors affecting the rescue task. In this study, an automated optimization platform was developed to improve the operating efficiency of the mixed flow pump. A three-dimensional hydraulic design, meshing, and computational fluid dynamics (CFD) were executed repeatedly by the main program. The objective function is to maximize hydraulic efficiency under design conditions. Both meridional shape and blade profiles of the impeller and diffuser were optimized at the same time. Based on the CFD results obtained by Optimal Latin Hypercube (OLH) sampling, surrogate models of the head and hydraulic efficiency were built using the Radial Basis Function (RBF) neural network. Finally, the optimal solution was obtained by the Multi- Island Genetic Algorithm (MIGA). The local energy loss was further compared with the baseline scheme using the entropy generation method. Through the regression analysis, it was found that the blade angles have the most significant influence on pump efficiency. The CFD results show that the hydraulic efficiency under design conditions increased by 5.1%. After optimization, the incidence loss and flow separation inside the pump are obviously improved. Additionally, the overall turbulent eddy dissipation and entropy generation were significantly reduced. The experimental results validate that the maximum pump efficiency increased by 4.3%. The optimization platform proposed in this study will facilitate the development of intelligent optimization of pumps.


2021 ◽  
Vol 9 (12) ◽  
pp. 1429
Author(s):  
Fan Yang ◽  
Pengcheng Chang ◽  
Yao Yuan ◽  
Na Li ◽  
Rongsheng Xie ◽  
...  

Vertical axial flow pump device has the characteristics of large flow and low head, which is widely used in pumping station projects with head of 3–9 m. In order to study the influence of the timing effect of the impeller relative flow channel and guide vane on the flow field and pulsation in the axial flow pump device, the whole flow channel of the vertical axial flow pump device was taken as the research object. The reliability of the numerical simulation was verified by physical model test. The flow field characteristics and pressure pulsation characteristics of the inlet and outlet regions of the impeller, the guide vane and the campaniform inlet conduit at different timing positions of the impeller under different flow rates were analyzed. The results show that the pressure coefficient distribution of the impeller inlet of the vertical axial flow pump device presents four high-pressure areas and four low-pressure areas with the rotation of the impeller. The pressure pulsation at the inlet and outlet of the impeller is mainly affected by the rotation of the impeller, and the main frequency is 4 times the rotation frequency amplitude of pressure pulsation decreases with the increase of flow rate. When the flow rate increased from 0.8 Qbep to 1.2 Qbep, the average velocity circulation at the guide vane outlet decreased by 12%; there is an obvious negative value region of the internal regularized helicity of the guide vane. When the flow rate increases from 0.8 Qbep to 1.2 Qbep, the amplitude of the pressure pulsation coefficient at the outlet of the guide vane decreases gradually, with a decrease of 94%. When the flow rate is 1.2 Qbep, the main frequency and the secondary frequency of the pressure pulsation are both low-frequency, with obvious low-frequency pulsation characteristics. Under the small flow condition of 0.8 Qbep, the outlet flow fluctuation of seven guide vane was 18.9% on average, and the flow variation of each guide vane was large. Under the optimal flow condition of 1.0 Qbep and large flow condition of 1.2 Qbep, the outlet flow fluctuation of 7 guide vane is 4.7% and 0.56% on average, and the flow change of each guide vane is stable. The outlet flow of the guide vane is mainly concentrated in two guide vane slots of the guide vane, and the flow ratios are 30.56%, 30.14% and 29.16% under three flow conditions, respectively. The research results provide a scientific basis for the optimization design and stable operation of vertical axial flow pump device.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3575
Author(s):  
Shuo Li ◽  
Wei Li ◽  
Leilei Ji ◽  
Weidong Shi ◽  
Ramesh K. Agarwal

A multi-region dynamic slip method was established to study the internal flow characteristics of the mixed-flow pump under the Alford effect. The ANSYS Fluent software and the standard k-ε two-equation model were used to numerically predict the mixed-flow pump’s external characteristics and analyze the forces on the impeller and guide vane internal vortex structure and non-uniform tip gap of the mixed-flow pump at different eccentric distances. The research results show that the external characteristic results of the numerical calculation are consistent with the experimental measurement. The head error of the design flow operating point is about 5%, and the efficiency error is no more than 3%, indicating the high accuracy of numerical calculation. Eccentricity has a significant influence on the flow field in the tip area of the mixed-flow pump impeller, the distribution of vortex core in the impeller presents obvious asymmetry, the strength and distribution area of the vortex core in the small gap area of the tip increase obviously, which aggravates the flow instability and increases the energy loss. With the increase of eccentricity, the strength and number of vortex core structures in the guide vane also increase significantly, and obvious flow separation occurs near the inlet of the guide vane suction surface on the eccentric side of the impeller. The circumferential distribution of L1 and L2 values represents the friction pressure gap in the eccentric state, and the eccentricity has a more noticeable effect on L1 and L2 values at the small gap; With the increase of eccentricity, the values of vorticity moment components L1 and L2 increase, and the Alford moment on the impeller increases. The leading-edge region of the blade is the main part affected by the unstable torque of the flow field. With the increase of eccentricity, the impact degree of tip leakage flow deepens, and the change of the tip surface pressure is the most obvious. The impact area of tip leakage flow is mainly concentrated in the first half of the impeller channel, which has an impact on the blade inlet flow field but has little impact on the blade outlet flow field.


2021 ◽  
Author(s):  
Chen Li ◽  
Hongming Wang

Three dimensional Reynolds averaged N-S equation and S-A turbulent model were adopted to simulate the flow field and hydraulic performance of the waterjet axial flow pump with the different impeller axial clearance. The numerical research results show that with the increase of axial clearance size, total pressure and static pressure rise at first and then decreases, torque and shaft power remain basically unchanged, the efficiency decreases gradually, the suction surface separation zone of stator expanded under the design condition. When the axial clearance is 30mm, the pump hydraulic performance and flow field are the best, and stator load distribution is the most uniform. When the axial clearance is 40–50mm the load of the lower part of stator leading edge is reduced greatly, which is not conducive to maintain static blade strength and maintain the stator rectifying action.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 326
Author(s):  
Huiyan Zhang ◽  
Fan Meng ◽  
Yunhao Zheng ◽  
Yanjun Li

To reduce cavitation-induced pressure fluctuations in a mixed-flow pump under impeller inflow distortion, the dynamic pressure signal at different monitoring points of a mixed-flow pump with a dustpan-shaped inlet conduit under normal and critical cavitation conditions was collected using high-precision digital pressure sensors. Firstly, the nonuniformity of the impeller inflow caused by inlet conduit shape was characterized by the time–frequency-domain spectra and statistical characteristics of pressure fluctuation at four monitoring points (P4–P7) circumferentially distributed at the outlet of the inlet conduit. Then, the cavity distribution on the blade surface was captured by a stroboscope. Lastly, the characteristics of cavitation-induced pressure fluctuation were obtained by analyzing the time–frequency-domain spectra and statistical characteristic values of dynamic pressure signals at the impeller inlet (P1), guide vanes inlet (P2), and guide vanes outlet (P3). The results show that the flow distribution of impeller inflow is asymmetric. The pav values at P4 and P6 were the smallest and largest, respectively. Compared with normal conditions, the impeller inlet pressure is lower under critical cavitation conditions, which leads to low pav, pp-p and a main frequency amplitude at P1. In addition, the cavity covered the whole suction side under H = 13.6 m and 15.5 m, which led the pp-p and dominant frequency amplitude of pressure fluctuation at P2 and P3 under critical cavitation to be higher than that under normal conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dongtao Ji ◽  
Weigang Lu ◽  
Linguang Lu ◽  
Lei Xu ◽  
Jun Liu ◽  
...  

In engineering, the highest operating head of the pumping station is usually controlled to be slightly lower than the lowest saddle bottom head of the axial-flow pump. However, in the practical operation, it is found that the highest operating head of the pumping station is obviously lower than the saddle bottom head of the pump device, which leads to the reduction of the operating range of the pumping station. To investigate the difference of lowest saddle bottom head between axial flow pump and axial flow pump device and apply it correctly, the energy performance tests of the TJ04-ZL-06 hydraulic model and its corresponding pump device were carried out to obtain the external curves, and numerical simulation was carried out to analyze and compare the internal flow field and pressure distribution. The results show that when the flow rate decreases, the first saddle-shaped region of the axial-flow pump and the saddle-shaped region of the pump device are caused by the decrease of the lift coefficient due to the increase of the attack angle between flow and blade. When the flow rate is less than 0.32Qd, the influence range of backflow in the inlet pipe is large, which leads to the high-pressure zone near the wall of the inlet pressure measurement section during the pump performance test, and hence the second saddle-shaped region of the axial-flow pump is essentially a measurement illusion. It is suggested that the inlet pressure measurement section should be set at least 4Dp away from the inlet flange of the impeller when testing the performance of the axial-flow pump under the condition of small flow rate, and the first saddle bottom head of the axial-flow pump or the saddle bottom head of the corresponding pump device can be considered as the control value of the highest head of the pumping station.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kan Kan ◽  
Qingying Zhang ◽  
Zhe Xu ◽  
Huixiang Chen ◽  
Yuan Zheng ◽  
...  

AbstractThe ultra-low head pump stations often have bidirectional demand of water delivery, so there is a risk of runaway accident occurring in both conditions. To analyze the difference of the runaway process under forward runaway condition (FRC) and backward runaway condition (BRC), the whole flow system of a horizontal axial flow pump is considered. The Shear-Stress Transport (SST) k–ω model is adopted and the volume of fluid (VOF) model is applied to simulate the water surface in the reservoirs. Meanwhile, the torque balance equation is introduced to obtain the real time rotational speed, then the bidirectional runaway process of the pump with the same head is simulated. In addition, the vortex transport equation and swirl number are proposed to reveal the flow characteristics during the runaway process. The results show that the runaway process can be divided into five stages: the drop, braking, rising, convergence and runaway stages, according to the changing law of torque curve. In the rising stage, the pressure difference on the blade surface continues to increase, which contributes to the abnormal torque increase. In this stage, the flow hits the pressure surface (PS) at a faster speed enlarging the pressure on PS, and the flow separation takes place on the suction surface (SS) weakening the pressure on SS. During the convergence and runaway stage, the pulsation amplitude of torque and axial force under FRC is obviously larger than those under BRC. This is because the rotation frequency of the vortex rope is the same as main pressure fluctuation frequency in impeller under FRC, which enhances the pulsation amplitude. Whereas the vortices are broken due to the inhibitive effect from guide vanes under BRC.


Sign in / Sign up

Export Citation Format

Share Document