particle distribution
Recently Published Documents


TOTAL DOCUMENTS

1165
(FIVE YEARS 207)

H-INDEX

49
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 645
Author(s):  
Sanket Chougale ◽  
Dirk Romeis ◽  
Marina Saphiannikova

Magnetoactive elastomers (MAEs) have gained significant attention in recent years due to their wide range of engineering applications. This paper investigates the important interplay between the particle microstructure and the sample shape of MAEs. A simple analytical expression is derived based on geometrical arguments to describe the particle distribution inside MAEs. In particular, smeared microstructures are considered instead of a discrete particle distribution. As a consequence of considering structured particle arrangements, the elastic free energy is anisotropic. It is formulated with the help of the rule of mixtures. We show that the enhancement of elastic moduli arises not only from the induced dipole–dipole interactions in the presence of an external magnetic field but also considerably from the change in the particle microstructure.


2022 ◽  
Author(s):  
Noriaki Ohara ◽  
Siwei He ◽  
Andrew D. Parsekian ◽  
Benjamin M. Jones ◽  
Rodrigo C. Rangel ◽  
...  

2022 ◽  
Vol 388 ◽  
pp. 114219
Author(s):  
Guangtao Duan ◽  
Takuya Matsunaga ◽  
Seiichi Koshizuka ◽  
Akira Yamaguchi ◽  
Mikio Sakai

2022 ◽  
Vol 2148 (1) ◽  
pp. 012042
Author(s):  
Long Chen ◽  
Enyan Wang ◽  
Yang Li ◽  
Miaocheng Weng ◽  
Fang Liu

Abstract CFD numerical simulation of clean room in Class D medical factory was carried out and compared with the actual measurement to verify the feasibility of the simulation method. On this basis, four typical air flow organizations were simulated and compared by changing air change rate from two directions of self-cleaning time and suspended particle concentration field. According to the simulation results, in order to meet the self-cleaning time within 20 min, the best air change rate should be between 15/h and 25/h. Different air flow organizations have different self-cleaning capacity, and the value of air change rate can be relatively small in the form of single-side supply same-side down return. Different airflow organizations have different suspended particle distribution characteristics, and there are differences in the applicable scenarios, and the applicability of the top supply down return is the best.


2022 ◽  
Vol 105 (1) ◽  
pp. 003685042110672
Author(s):  
Hongwan Jiang ◽  
Sen Yuan ◽  
Hao Liu ◽  
Weiwei Li ◽  
Xiaorong Zhou

In order to further improve the mixing performance of the mixing device, the structure of the agitator was optimized, and the effects of the diameter and pitch of the agitator on the solid-liquid suspension characteristics were analyzed by single factor method. Multiple reference frame (MRF), computational fluid dynamics, Euler multiphase flow model and standard K- ε turbulence model were used to investigate the effect of the height from the bottom of the agitator on the suspension characteristics of particles in the agitator was studied. The results show that reducing the height from the bottom of the agitator can promote the suspension of particles at the bottom of the tank, but too low height from the bottom will easily produce mixing dead zone at the bottom of the tank, and cause the accumulation of particles. Reducing the height of the agitator from the bottom will enlarge the clear liquid area of the flow field, cause uneven particle distribution and increase the stirring torque. With the increase of agitator diameter, the critical suspension speed of the flow field decrease, but the stirring power required by the flow field increase. Increasing the blade spacing in a certain range can promote the suspension of particles and make the distribution of particles in the flow field more uniform. Therefore, the mixing power and the uniformity of particle concentration distribution need to be considered together in order to make the mixing device more efficient and energy-saving.


2021 ◽  
Vol 5 (2) ◽  
pp. 095-102
Author(s):  
Hima Sekhar Sai

An Investigation was conducted to produce Aluminium based Functionally graded material (FGM) composites by Friction stir processing (FSP). A reinforcement strategy featuring the use of Alumina and TiC reinforcements was investigated, where holes were drilled in an Aluminium plate, filled with reinforcements and stirred using FSP. A mathematical model was formulated for positioning of holes in such a manner that the composition of the reinforcements varies from maximum to minimum over a given length. Samples were subjected to various number of FSP passes from one to three with 100% overlap and its influence on particle distribution and homogeneity was studied using Scanning electron microscopy (SEM) at cross sections parallel to the tool traverse direction. A progressive gradient in hardness values was observed for the surface composites at all the passes.


2021 ◽  
Vol 21 (3) ◽  
pp. 103-108
Author(s):  
Julia D. Vavilova ◽  
Elena L. Bolkhovitina ◽  
Andrey O. Bogorodskiy ◽  
Ivan S. Okhrimenko ◽  
Valentin I. Borshchevskiy ◽  
...  

BACKGROUND: Daily, people inhale airborne viral particles, some of which have a size of about 100 nm, such as particles of SARS-CoV-2. Kinetics of such 100 nm particle distribution in the respiratory tract is important, however, not a properly investigated question. AIM: To estimate the dissemination of inert viral particles based on the analysis of the spatial distribution of fluorescent 100 nm particles in the mouse lungs at different time points after the application. MATHERIALS AND METHODS: Fluorescent particles of 100 nm size were applied to C57BL/6 mice. 6, 24, 48 and 72 hours after, lungs were excised and fixed. Lung lobes were stained with immunohistochemistry as whole-mounts and then underwent optical clearance. Three-dimensional images of whole-mount mouse lung lobes were acquired using confocal laser scanning microscopy. RESULTS: 6 hours after the particle application particles were detected in lungs both as single particles and as particle agglomerates. Particles were both free and internalized by phagocytic cells. 24 hours after the application particles were detected both in bronchial lumen and in the alveolar space. Particles were detected in the mouse lungs up to 72 hours after the application. CONCLUSIONS: Reaching the respiratory tract of mammalian, inert particles which size equal to SARS-CoV-2 particle size distribute both in bronchi and in alveoli and undergoes internalization of phagocytic cells.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012040
Author(s):  
Laith Saheb ◽  
Tagreed M. Al-Saadi

Abstract This study includes the preparation of novel nano ferrite (Zn0.7 Mn0.3-x Cex Fe2O4) by using the auto combustion technique. For the following molar values, the percentage x was calculated: 0.0, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3. The nano-ferrite was calcined for 2 hours at 500°C. The energy dispersive x-ray spectroscopy (EDX), X-ray diffraction (XRD) and field emission scanning electron microscopy FE-SEM was used to examine structural, morphological, and sensing properties. The spinel cubic structure was revealed by XRD findings. The particle distribution was shown to contain voids by FE-SEM. The testing of sensing characteristics to NH3 gas indicated that the synthesized nano-ferrite has a small response time ranging from (15.3-25.2) s as well as a small recovery time between (36-58.5) s, also has a higher sensitivity of about 72.23%.


Sign in / Sign up

Export Citation Format

Share Document