mixed flow
Recently Published Documents


TOTAL DOCUMENTS

1071
(FIVE YEARS 226)

H-INDEX

33
(FIVE YEARS 7)

Author(s):  
Kittipass Wasinarom ◽  
Dachdanai Boonchauy ◽  
Jaruphant Noosomton ◽  
Jarruwat Charoensuk

2022 ◽  
Vol 10 (1) ◽  
pp. 27-44
Author(s):  
D. M Priyantha Wedagama ◽  
I Wayan Suweda ◽  
N. L. G Astariyani

Fluids ◽  
2022 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Daniel Rosell ◽  
Tomas Grönstedt

The possibility of extracting large amounts of electrical power from turbofan engines is becoming increasingly desirable from an aircraft perspective. The power consumption of a future fighter aircraft is expected to be much higher than today’s fighter aircraft. Previous work in this area has concentrated on the study of power extraction for high bypass ratio engines. This motivates a thorough investigation of the potential and limitations with regards to performance of a low bypass ratio mixed flow turbofan engine. A low bypass ratio mixed flow turbofan engine was modeled, and key parts of a fighter mission were simulated. The investigation shows how power extraction from the high-pressure turbine affects performance of a military engine in different parts of a mission within the flight envelope. An important conclusion from the analysis is that large amounts of power can be extracted from the turbofan engine at high power settings without causing too much penalty on thrust and specific fuel consumption, if specific operating conditions are fulfilled. If the engine is operating (i) at, or near its maximum overall pressure ratio but (ii) further away from its maximum turbine inlet temperature limit, the detrimental effect of power extraction on engine thrust and thrust specific fuel consumption will be limited. On the other hand, if the engine is already operating at its maximum turbine inlet temperature, power extraction from the high-pressure shaft will result in a considerable thrust reduction. The results presented will support the analysis and interpretation of fighter mission optimization and cycle design for future fighter engines aimed for large power extraction. The results are also important with regards to aircraft design, or more specifically, in deciding on the best energy source for power consumers of the aircraft.


2022 ◽  
Vol 31 (1) ◽  
pp. 13-24
Author(s):  
Jiahui Qiu ◽  
Qianfeng Zhang ◽  
Min Zhang ◽  
Juan Du ◽  
Wenqiang Zhang ◽  
...  

2022 ◽  
Vol 200 ◽  
pp. 117637
Author(s):  
Md. Hasan Tarek Mondal ◽  
Md. Akhtaruzzaman ◽  
Md. Azadul Islsm ◽  
Md. Sazzat Hossain Sarker
Keyword(s):  

2021 ◽  
Vol 9 (3) ◽  
pp. 114-121
Author(s):  
Tamás Tolnai

Differences in flow rates of this nature have a significant effect on the unevenness of the moisture content of the dried material, since the material which remains in the drying chamber for an unnecessarily long time is over-dried and the under-drying is a problem for the material remaining in the dryer for too short a time. In this article, I analyzed the effect of increasing particle-wall friction on the unevenness of the particle flow velocity field. The research has shown that dead zones are formed in the vicinity of the rough walls, which reduce the uniformity of the flow. The results show that the tribological properties of the inner wall surfaces of the dryers can have a very significant effect on the efficient operation of the dryers.


Author(s):  
Mengcheng Wang ◽  
Yanjun Li ◽  
Jianping Yuan ◽  
Shouqi Yuan
Keyword(s):  

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 365
Author(s):  
Rong Lu ◽  
Jianping Yuan ◽  
Guangjuan Wei ◽  
Yong Zhang ◽  
Xiaohui Lei ◽  
...  

Mixed flow pumps driven by hydraulic motors have been widely used in drainage in recent years, especially in emergency pump trucks. Limited by the power of the truck engine, its operating efficiency is one of the key factors affecting the rescue task. In this study, an automated optimization platform was developed to improve the operating efficiency of the mixed flow pump. A three-dimensional hydraulic design, meshing, and computational fluid dynamics (CFD) were executed repeatedly by the main program. The objective function is to maximize hydraulic efficiency under design conditions. Both meridional shape and blade profiles of the impeller and diffuser were optimized at the same time. Based on the CFD results obtained by Optimal Latin Hypercube (OLH) sampling, surrogate models of the head and hydraulic efficiency were built using the Radial Basis Function (RBF) neural network. Finally, the optimal solution was obtained by the Multi- Island Genetic Algorithm (MIGA). The local energy loss was further compared with the baseline scheme using the entropy generation method. Through the regression analysis, it was found that the blade angles have the most significant influence on pump efficiency. The CFD results show that the hydraulic efficiency under design conditions increased by 5.1%. After optimization, the incidence loss and flow separation inside the pump are obviously improved. Additionally, the overall turbulent eddy dissipation and entropy generation were significantly reduced. The experimental results validate that the maximum pump efficiency increased by 4.3%. The optimization platform proposed in this study will facilitate the development of intelligent optimization of pumps.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3575
Author(s):  
Shuo Li ◽  
Wei Li ◽  
Leilei Ji ◽  
Weidong Shi ◽  
Ramesh K. Agarwal

A multi-region dynamic slip method was established to study the internal flow characteristics of the mixed-flow pump under the Alford effect. The ANSYS Fluent software and the standard k-ε two-equation model were used to numerically predict the mixed-flow pump’s external characteristics and analyze the forces on the impeller and guide vane internal vortex structure and non-uniform tip gap of the mixed-flow pump at different eccentric distances. The research results show that the external characteristic results of the numerical calculation are consistent with the experimental measurement. The head error of the design flow operating point is about 5%, and the efficiency error is no more than 3%, indicating the high accuracy of numerical calculation. Eccentricity has a significant influence on the flow field in the tip area of the mixed-flow pump impeller, the distribution of vortex core in the impeller presents obvious asymmetry, the strength and distribution area of the vortex core in the small gap area of the tip increase obviously, which aggravates the flow instability and increases the energy loss. With the increase of eccentricity, the strength and number of vortex core structures in the guide vane also increase significantly, and obvious flow separation occurs near the inlet of the guide vane suction surface on the eccentric side of the impeller. The circumferential distribution of L1 and L2 values represents the friction pressure gap in the eccentric state, and the eccentricity has a more noticeable effect on L1 and L2 values at the small gap; With the increase of eccentricity, the values of vorticity moment components L1 and L2 increase, and the Alford moment on the impeller increases. The leading-edge region of the blade is the main part affected by the unstable torque of the flow field. With the increase of eccentricity, the impact degree of tip leakage flow deepens, and the change of the tip surface pressure is the most obvious. The impact area of tip leakage flow is mainly concentrated in the first half of the impeller channel, which has an impact on the blade inlet flow field but has little impact on the blade outlet flow field.


Sign in / Sign up

Export Citation Format

Share Document