Aerodynamic Analysis of V-Shaped Flight Formation of Flapping-Wing Drones: Analytical and Experimental Studies

2022 ◽  
Author(s):  
Joseph Martinez-Ponce ◽  
Cameron Urban ◽  
Sophie F. Armanini ◽  
Ramesh K. Agarwal ◽  
Mostafa Hassanalian
2021 ◽  
Vol 112 ◽  
pp. 106557
Author(s):  
Dawei Bie ◽  
Daochun Li ◽  
Jinwu Xiang ◽  
Huadong Li ◽  
Zi Kan ◽  
...  

1993 ◽  
Author(s):  
MAX PLATZER ◽  
KERRIN NEACE ◽  
CHUNG-KIANG PANG

Author(s):  
Ryan K. Schwab ◽  
Heidi E. Reid ◽  
Mark A. Jankauski

Abstract Flapping, flexible wings deform under both aerodynamic and inertial loads. However, the fluid-structure interaction (FSI) governing flapping wing dynamics is not well understood. Conventional FSI models require excessive computational resources and are not conducive to parameter studies that consider variable wing kinematics or geometry. Here, we present a simple two-way coupled FSI model for a wing subjected to single-degree-of-freedom (SDOF) rotation. The model is reduced-order and can be solved several orders of magnitude faster than direct computational methods. We construct a SDOF rotation stage and measure basal strain of a flapping wing in-air and in-vacuum to study our model experimentally. Overall, agreement between theory and experiment is excellent. In-vacuum, the wing has a large 3ω response when flapping at approximately 1/3 its natural frequency. This response is attenuated substantially when flapping in-air as a result of aerodynamic damping. These results highlight the importance of two-way coupling between the fluid and structure, since one-way coupled approaches cannot describe such phenomena. Moving forward, our model enables advanced studies of biological flight and facilitates bio-inspired design of flapping wing technologies.


2020 ◽  
Vol 10 (10) ◽  
pp. 3404
Author(s):  
Bing Ji ◽  
Zenggang Zhu ◽  
Shijun Guo ◽  
Si Chen ◽  
Qiaolin Zhu ◽  
...  

An investigation into the aerodynamic characteristics has been presented for a bio-inspired flapping wing aircraft. Firstly, a mechanism has been developed to transform the usual rotation powered by a motor to a combined flapping and pitching motion of the flapping wing. Secondly, an experimental model of the flapping wing aircraft has been built and tested to measure the motion and aerodynamic forces produced by the flapping wing. Thirdly, aerodynamic analysis is carried out based on the measured motion of the flapping wing model using an unsteady aerodynamic model (UAM) and validated by a computational fluid dynamics (CFD) method. The difference of the average lift force between the UAM and CFD method is 1.3%, and the difference between the UAM and experimental results is 18%. In addition, a parametric study is carried out by employing the UAM method to analyze the effect of variations of the pitching angle on the aerodynamic lift and drag forces. According to the study, the pitching amplitude for maximum lift is in the range of 60°~70° as the flight velocity decreases from 5 m/s to 1 m/s during landing.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 52622-52630
Author(s):  
Yanghai Nan ◽  
Yi Chen ◽  
Don Mcglinchey ◽  
Yun Li

2014 ◽  
Vol 6 (2) ◽  
pp. 155-157 ◽  
Author(s):  
Md Jalal Uddin Rumi ◽  
Nc Chattopadhyay ◽  
Md Abdus Salam

Sign in / Sign up

Export Citation Format

Share Document