lift and drag
Recently Published Documents


TOTAL DOCUMENTS

833
(FIVE YEARS 212)

H-INDEX

34
(FIVE YEARS 3)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 524
Author(s):  
Artur Reiswich ◽  
Max Finster ◽  
Martin Heinrich ◽  
Rüdiger Schwarze
Keyword(s):  

The authors wish to make the following corrections to their paper [...]


Author(s):  
Ugur Can ◽  
Sakir Bal

In this study, it was aimed to obtain an accurate extrapolation method to compute lift and drag forces of high-speed vessels at full-scale by using CFD (Computational Fluid Dynamics) based GEOSIM (GEOmetrically SIMilar) method which is valid for both fully planing and semi-planing regimes. Athena R/V 5365 bare hull form with a skeg which is a semi-displacement type of high-speed vessel was selected with a model family for hydrodynamic analyses under captive and free to sinkage/trim conditions. Total drag and lift forces have been computed for a generated GEOSIM family of this form at three different model scales and full-scale for Fr = 0.8 by an unsteady RANS (Reynolds Averaged Navier–Stokes) solver. k–ε turbulence model was used to simulate the turbulent flow around the hulls, and both DFBI (Dynamic Fluid Body Interaction) and overset mesh technique were carried out to model the heave and pitch motions under free to sinkage/trim condition. The computational results of the model family were used to get “drag-lift ratio curve” for Athena hull at a fixed Fr number and so the corresponding results at full scale were predicted by extrapolating those of model scales in the form of a non-dimensional ratios of drag-lift forces. Then the extrapolated full-scale results calculated by modified GEOSIM method were compared with those of full-scale CFD and obtained by Froude extrapolation technique. The modified GEOSIM method has been found to be successful to compute the main forces (lift and drag) acting on high-speed vessels as a single coefficient at full scale. The method also works accurately both under fully and semi-planing conditions.


2022 ◽  
Author(s):  
Ang Li ◽  
Mac Gaunaa ◽  
Georg Raimund Pirrung ◽  
Alexander Meyer Forsting ◽  
Sergio González Horcas

Abstract. In the present work, a consistent method for calculating the lift and drag forces from the 2-D airfoil data for the dihedral or coned horizontal-axis wind turbines when using generalized lifting-line methods is described. The generalized lifting-line methods include, for example, lifting-line (LL), actuator line (AL), blade element momentum (BEM) and blade element vortex cylinder (BEVC) methods. A consistent interpretation of classic unsteady 2-D thin airfoil theory results for use in a generally moving frame of reference within a linearly varying onset velocity field reveals that it is necessary to use not only the relative flow magnitude and direction at one point along the chord line (for instance three-quarter-chord), but also the gradient of the flow direction in the chordwise direction (or, equivalently, the flow direction at the quarter-chord) to correctly determine the magnitude and direction of the resulting 2-D aerodynamic forces and moment. However, this aspect is generally overlooked and most implementations in generalized lifting-line methods use only the flow information at one calculation point per section for simplicity. This simplification will not change the performance prediction of planar rotors, but will cause an error when applied to non-planar rotors. The present work proposes a generalized method to correct the error introduced by this simplified single-point calculation method. In this work this effect is investigated using the special case, where the wind turbine blade has only dihedral and no sweep, operating at steady-state conditions with uniform inflow applied perpendicular to the rotor plane. We investigate the impact of the effect by comparing the predictions of the steady-state performance of non-planar rotors from the consistent approach with the simplified one-point approach of the LL method. The results are verified using blade geometry resolving Reynolds-averaged Navier-Stokes (RANS) simulations. The numerical investigations confirmed that the correction derived from thin airfoil theory is needed for the calculations to correctly determine the magnitude and direction of the sectional aerodynamic forces for non-planar rotors. The aerodynamic loads of upwind and downwind coned blades that are calculated using the LL method, the BEM method, the BEVC method and the AL method are compared for the simplified and the full method. Results using the full method, including different specific implementation schemes, are shown to agree significantly better with fully-resolved RANS than the often used simplified one-point approaches.


2022 ◽  
Vol 355 ◽  
pp. 01022
Author(s):  
Yourong Fan ◽  
Xinhua Wang ◽  
Zhe Hu ◽  
Kai Zhang

In order to solve the problem of rotor airflow interference to the wing of tiltrotor UAV, the lift and drag in the slipstream area and the free flow area were calculated respectively according to the hydrodynamics theory and CFD simulation. The longitudinal nonlinear dynamics model of tiltrotor UAV is established by Newton-Euler method. In order to solve the problem that the lift and thrust are difficult to balance the body gravity in the transition flight mode, a method for calculating the transition corridor of a tiltrotor UAV without cyclic pitch is proposed. The boundary of the transition corridor is restricted by the Angle of attack of the wing and the thrust of the rotor. Considering the requirements of UAV cruise speed, flight safety and minimum energy consumption, the optimal transition curve is selected. The result show that the designed transition curve can ensure that the lift and the rotor thrust can balance the gravity completely and the Angle of attack is in a reasonable range, and the rotor force has enough margin of safety.


Author(s):  
Soheila Abdolahipour ◽  
Mahmoud Mani ◽  
Arash Shams Taleghani

In this experimental investigation, a pulse flow control system on a high-lift device of a wing with a NASA SC(2)-0714 airfoil within the Reynolds number range of the take-off and landing phases, is proposed. In this study, an innovative method of signal modulation has been used in order to simultaneously exploit the benefits of both low and high excitation frequencies in one actuator driving signal that are known to be effective in separation control. It is observed that the lift and drag coefficients are improved due to the use of modulated pulse jets compared to the simple pulse jet.


2021 ◽  
Vol 157 (A4) ◽  
Author(s):  
K A Bhosale ◽  
J T Duffy

A case study was conducted to investigate and quantify stabiliser fin-hull interaction using a combination of Computational Fluid Dynamics and physical model experiments. The fin-hull interaction was studied by comparing the lift and drag of a stabiliser fin in a free stream condition and when attached to a hull. The findings of this case study showed that using free stream fin characteristics to predict performance of a stabiliser fin fitted to the hull resulted in an over-prediction of drag by up to 46% and under-prediction of lift by up to 75% for the speeds and angle of attack analysed. These discrepancies are for this case study only and in practice will vary for different hull forms, fin types, fin location and angles of attack. However, the research highlights the limitations of using free stream fin characteristics to predict the performance of a fin fitted to a hull.


Author(s):  
S Bal

The hydrodynamic performance of three-dimensional WIG (Wing-In-Ground) vehicle moving with a constant speed above free water surface has been predicted by an Iterative Boundary Element Method (IBEM). IBEM originally developed for 3-D hydrofoils moving under free surface has been modified and extended to 3-D WIGs moving above free water surface. The integral equation based on Green's theorem can be divided into two parts: (1) the wing part, (2) free surface part. These two problems are solved separately, with the effects of one on the other being accounted for in an iterative manner. Both the wing part including the wake surface and the free surface part have been modelled with constant strength dipole and source panels. The effects of Froude number, the height of the hydrofoil from free surface, the sweep, dihedral and anhedral angles on the lift and drag coefficients are discussed for swept and V-type WIGs.


2021 ◽  
Vol 157 (A3) ◽  
Author(s):  
J AlaviMehr ◽  
M R Davis ◽  
J Lavroff

Submerged T-foils are an essential forward component of the ride control systems of high speed ferries. A model scale T-Foil for a 2.5m towing tank model of a 112m INCAT Tasmania high-speed wave-piercer catamaran has been tested for both static and dynamic lift performance. The tests were carried out using a closed-circuit water tunnel to investigate the lift and drag characteristics as well as frequency response of the T-Foil. The model T-Foil operates at a Reynolds number of approximately 105, has an aspect ratio of 3.6 and a planform which is strongly tapered from the inboard to outboard end. All of these factors, as well as strut and pivot interference, influence the steady lift curve slope ( of the  model T-foil which was found to be 61% of the value for an ideal aerofoil with elliptic loading. The T-foil dynamic performance was limited primarily by the stepper motor drive system and connection linkage. At the frequency of maximum motion of the 2.5 m catamaran model (about 1.5Hz) the model T-foil has approximately 5% reduction of amplitude and 15 degrees of phase shift relative to the low frequency response. Only very small limitations arose due to the unsteady lift as predicted by the analysis of Theodorsen. It was concluded that the model scale T-foil performed adequately for application to simulation of a ride control system at model scale.


2021 ◽  
Author(s):  
Thomas Potentier ◽  
Emmanuel Guilmineau ◽  
Arthur Finez ◽  
Colin Le Bourdat ◽  
Caroline Braud

Abstract. A wind turbine blade equipped with root spoilers is analysed using 2D Computational Fluid Dynamics (CFD) to assess the unsteady impact of passive devices. Several metrics such as lift and drag coefficients, pressure and instantaneous velocity field around the aerofoil, Power Spectral Density and Strouhal number are used in the 2D unsteady analysis. The spoiler is found to efficiently rearrange the flow, adding lift throughout the positive angles of attack. However, the drawback is a high drag penalty coupled with high unsteadiness of the aerodynamic forces.


2021 ◽  
Author(s):  
Chen Li ◽  
Peiting Sun ◽  
Hongming Wang

The leading-edge bulges along the extension direction are designed on the marine wingsail. The height and the spanwise wavelength of the protuberances are 0.1c and 0.25c, respectively. At Reynolds number Re=5×105, the Reynolds Averaged Navier-Stokes equations are applied to the simulation of the wingsail with the bulges thanks to ANSYS Fluent finite-volume solver based on the SST K-ω models. The grid independence analysis is carried out with the lift and drag coefficients of the wingsail at AOA = 8° and AOA=20°. The results show that while the efficiency of the wingsail is reduced by devising the leading-edge bulges before stall, the bulges help to improve the lift coefficient of the wingsail when stalling. At AOA=22° under the action of the leading-edge tubercles, a convective vortex is formed on the suction surface of the modified wingsail, which reduces the flow loss. So the bulges of the wingsail can delay the stall.


Sign in / Sign up

Export Citation Format

Share Document