scholarly journals Influence of Boundary Layer and Wake on Free Surface Flow around a Ship Model

1987 ◽  
Vol 1987 (161) ◽  
pp. 49-57 ◽  
Author(s):  
Mitsuhisa Ikehata ◽  
Yusuke Tahara
Author(s):  
Costel Ungureanu ◽  
Costel Iulian Mocanu

"Free surface flow is a hydrodynamic problem with a seemingly simple geometric configuration but with a flow topology complicated by the pressure gradient due to the presence of the obstacle, the interaction between the boundary layer and the free surface, turbulence, breaking waves, surface tension effects between water and air. As the ship appendages become more and more used and larger in size, the general understanding of the flow field around the appendages and the junction between them and the hull is a topical issue for naval hydrodynamics. When flowing with a boundary layer, when the streamlines meet a bluff body mounted on a solid flat or curved surface, detachments appear in front of it due to the blocking effect. As a result, vortex structures develop in the fluid, also called horseshoe vortices, the current being one with a completely three-dimensional character, complicated by the interactions between the boundary layer and the vortex structures thus generated. Despite the importance of the topic, the literature records the lack of coherent methods for investigating free surface flow around junctions, the lack of consistent studies on the influence of the inclination of the profile mounted on the body. As a result, this paper aims to systematically study the influence of profile inclination in respect to the support plate."


2011 ◽  
Vol 121-126 ◽  
pp. 1849-1857
Author(s):  
Chao Bang Yao ◽  
Wen Cai Dong

A method is presented to calculate the resistance of a ship taking the effect of sinkage & trim and viscosity of fluid. The free surface flow field is evaluated by solving RANS equations with VOF method. The sinkage and trim are computed by hydrodynamic equilibrium equations. The method can be divided into direct and indirect method according to the way to calculate trim of ship. The software Fluent is used to implement this method. With dynamic mesh being used, the position of a ship is updated by the motion of “ship + boundary layer” grid zone. The present methods have been applied to the INSEAN2340 hull for different Froude numbers and are found to be efficient for evaluating the flow field, resistance, sinkage and trim.


2012 ◽  
Vol 44 ◽  
pp. 57-67 ◽  
Author(s):  
C. Ciortan ◽  
J.B.V. Wanderley ◽  
C. Guedes Soares

Author(s):  
Md. Abul Kalam Azad ◽  
Roger E. Khayat

The wall jet flow near channel exit at moderate Reynolds Number, emerging from a two-dimensional channel, is examined theoretically in this study. Poiseuille flow conditions are assumed to prevail far upstream from the exit. The problem is solved using the method of matched asymptotic expansions. The small parameter involved in the expansions is the inverse Reynolds number. The flow and stress fields are obtained as composite expansions by matching the flow in the boundary-layer region near the free surface, flow in the outer layer region and the flow in the core region. The fluid is assumed to be Newtonian and it is found that the jet contracts downstream from the channel exit. The influence of inertia on the shape of free surface, the velocity and stress is emphasized and the higher order boundary layer is explored. To leading order, the problem is similar to the case of the free jet (Tillett) [1] with different boundary conditions. A similarity solution can be carried out using a similarity variable problem which is then solved as an initial-value problem, where the equation is integrated subject to the boundary conditions and a guessed value of the slope at the origin. The slope is adjusted until reasonable matching is achieved between the solution and the asymptotic form at large θ. The level of contraction is essentially independent of inertia, but the contraction moves further downstream with increasing Reynolds number. The present work provides the correct conditions near exit, which are required to determine the jet structure further downstream. If the jet becomes thin far downstream, a boundary layer formulation can be used with the presently predicted boundary conditions for steady and possibly transient flows.


1975 ◽  
Vol 3 (1) ◽  
pp. 51-68 ◽  
Author(s):  
Thomas G. Smith ◽  
J.O. Wilkes

Author(s):  
Arthur E. P. Veldman ◽  
Henk Seubers ◽  
Peter van der Plas ◽  
Joop Helder

The simulation of free-surface flow around moored or floating objects faces a series of challenges, concerning the flow modelling and the numerical solution method. One of the challenges is the simulation of objects whose dynamics is determined by a two-way interaction with the incoming waves. The ‘traditional’ way of numerically coupling the flow dynamics with the dynamics of a floating object becomes unstable (or requires severe underrelaxation) when the added mass is larger than the mass of the object. To deal with this two-way interaction, a more simultaneous type of numerical coupling is being developed. The paper will focus on this issue. To demonstrate the quasi-simultaneous method, a number of simulation results for engineering applications from the offshore industry will be presented, such as the motion of a moored TLP platform in extreme waves, and a free-fall life boat dropping into wavy water.


Sign in / Sign up

Export Citation Format

Share Document