hydrodynamic equilibrium
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 61 (11) ◽  
pp. 116047
Author(s):  
N. Tsujii ◽  
Y. Takase ◽  
A. Ejiri ◽  
O. Watanabe ◽  
H. Yamazaki ◽  
...  

Author(s):  
Jonathan Schilling ◽  
H Thomsen ◽  
Christian Brandt ◽  
Sehyun Kwak ◽  
Jakob Svensson ◽  
...  

2020 ◽  
Vol 6 (24) ◽  
pp. eaba0606 ◽  
Author(s):  
Peiran Zhang ◽  
Chuyi Chen ◽  
Xingyu Su ◽  
John Mai ◽  
Yuyang Gu ◽  
...  

Advances in lab-on-a-chip technologies are driven by the pursuit of programmable microscale bioreactors or fluidic processors that mimic electronic functionality, scalability, and convenience. However, few fluidic mechanisms allow for basic logic operations on rewritable fluidic paths due to cross-contamination, which leads to random interference between “fluidic bits” or droplets. Here, we introduce a mechanism that allows for contact-free gating of individual droplets based on the scalable features of acoustic streaming vortices (ASVs). By shifting the hydrodynamic equilibrium positions inside interconnected ASVs with multitonal electrical signals, different functions such as controlling the routing and gating of droplets on rewritable fluidic paths are demonstrated with minimal biochemical cross-contamination. Electrical control of this ASV-based mechanism allows for unidirectional routing and active gating behaviors, which can potentially be scaled to functional fluidic processors that can regulate the flow of droplets in a manner similar to the current in transistor arrays.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 961
Author(s):  
Fei Wang ◽  
Qiaoyun Chen ◽  
Yingqi Ruan

Post-fracturing well shut-in is traditionally due to the elastic closure of hydraulic fractures and proppant compaction. However, for shale gas wells, the extension of shut-in time may improve the post-fracturing gas production due to formation energy supplements by fracturing-fluid imbibition. This paper presents a methodology using numerical simulation to simulate the hydrodynamic equilibrium phenomenon of a hydraulically fractured shale gas reservoir, including matrix imbibition and fracture network crossflow, and further optimize the post-fracturing shut-in time. A mathematical model, which can describe the fracturing-fluid hydrodynamic transport during the shut-in process, and consider the distinguishing imbibition characteristics of a hydraulically fractured shale reservoir, i.e., hydraulic pressure, capillarity and chemical osmosis, is developed. The key concept, i.e., hydrodynamic equilibrium time, for optimizing the post-fracturing shut-in schedule, is proposed. The fracturing-fluid crossflow and imbibition profiles are simulated, which indicate the water discharging and sucking equilibrium process in the coupled fracture–matrix system. Based on the simulation, the hydrodynamic equilibrium time is calculated. The influences of hydraulic pressure difference, capillarity and chemical osmosis on imbibition volume, and hydrodynamic equilibrium time are also investigated. Finally, the optimal shut-in time is determined if the gas production rate is pursued and the fracturing-fluid loss is allowable. The proposed simulation method for determining the optimal shut-in time is meaningful to the post-fracturing shut-in schedule.


2018 ◽  
Vol 38 (6) ◽  
pp. 1015-1025
Author(s):  
Sanny M. Andrade-Porto ◽  
Cleverson A. Ramos ◽  
Rosemary Roque ◽  
Elizabeth G. Affonso ◽  
José F.M. Barcellos ◽  
...  

ABSTRACT: This study aimed to determine the lethal concentration and the structural and ultra-structural effects caused by the formalin exposure on juveniles of Arapaima gigas. Ninety fish (60.1± 2.5g and 20.2±0.9cm) were exposed to 0, 22, 44, 66, 88 and 110mg L-1 in order to determine the lethal concentration (LC50-96h) that was 36.4mg L-1 of formalin. Sublethal effects were evaluated using histopathological analysis on the gills and assessment of behavioral alterations and clinical signs. The LC50 of formalin for 24, 48 and 72h was 88.3, 64.7 and 56.8mg L-1 respectively. Clinical signs and behavioral changes were found: erratic swimming, lethargy, crowding on the water surface, loss of hydrodynamic equilibrium, spasms and agonistic confrontation, which were observed only at 88 and 110mg L-1. The histological alteration index (HAI) showed that 66, 88 and 100mg L-1 presented significant difference (p<0.05) in relation to unexposed fish, indicating that moderate damage to the gills of fish exposed to formalin had occurred. The mean values of alteration (MVA) for 22, 44, 66, 88 and 110mg L-1 were 1.14, 1.29, 1.51, 1.53 and 1.60 respectively, and differences in this index were only observed with 110 mgL-1 of formalin. It is therefore possible to conclude that sublethal concentrations of formalin (22.0mg L-1) did not compromise the health of juveniles of A. gigas. Finally, concentrations greater than to LC50-96h may be carefully used for short-term exposure, since the MVA for all concentrations tested only indicated localized lesions that did not compromise gills functionality of exposed fish.


2016 ◽  
Vol 82 (5) ◽  
Author(s):  
Peter J. Catto ◽  
Sergei I. Krasheninnikov

Magnetorotational stability is revisited for self-consistent three-dimensional magnetized hot plasma equilibria in a gravitational field. The eikonal analysis presented finds that magnetorotational stability analysis must be performed with some care to retain compressibility and density gradient effects, and departures from strict Keplerian motion. Indeed, retaining these effects highlights differences between the magnetorotational instability found in the absence of gravity (Velikhov, Sov. Phys. JETP, vol. 36, 1959, pp. 995–998) and that found the presence of gravity (Balbus & Hawley, Astrophys. J., vol. 376, 1991, pp. 214–222). In the non-gravitational case, compressibility and density variation alter the stability condition, while these effects only enter for departures from strict Keplerian motion in a gravitational field. The conditions for instability are made more precise by employing recent magnetized equilibrium results (Catto et al., J. Plasma Phys., vol. 81, 2015, 515810603), rather than employing a hydrodynamic equilibrium. We focus on the stability of the $\unicode[STIX]{x1D6FD}>1$ limit for which equilibria were found in the absence of a toroidal magnetic field, where $\unicode[STIX]{x1D6FD}=$ plasma/magnetic pressure.


2015 ◽  
Vol 63 (2) ◽  
pp. 486-513 ◽  
Author(s):  
Leszek M. Kaczmarek ◽  
Szymon Sawczyński ◽  
Jarosław Biegowski

Sign in / Sign up

Export Citation Format

Share Document