scholarly journals Multiaccess quantum communication and product higher rank numerical range

2013 ◽  
Vol 13 (7&8) ◽  
pp. 541-566
Author(s):  
Maciej Demianowicz ◽  
Pawel Horodecki ◽  
Karol Zyczkowski

In the present paper we initiate the study of the product higher rank numerical range. The latter, being a variant of the higher rank numerical range [M.--D. Choi {\it et al.}, Rep. Math. Phys. {\bf 58}, 77 (2006); Lin. Alg. Appl. {\bf 418}, 828 (2006)], is a natural tool for studying a construction of quantum error correction codes for multiple access channels. We review properties of this set and relate it to other numerical ranges, which were recently introduced in the literature. Further, the concept is applied to the construction of codes for bi--unitary two--access channels with a hermitian noise model. Analytical techniques for both outerbounding the product higher rank numerical range and determining its exact shape are developed for this case. Finally, the reverse problem of constructing a noise model for a given product range is considered.

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Savvas Varsamopoulos ◽  
Koen Bertels ◽  
Carmen G. Almudever

Abstract There has been a rise in decoding quantum error correction codes with neural network–based decoders, due to the good decoding performance achieved and adaptability to any noise model. However, the main challenge is scalability to larger code distances due to an exponential increase of the error syndrome space. Note that successfully decoding the surface code under realistic noise assumptions will limit the size of the code to less than 100 qubits with current neural network–based decoders. Such a problem can be tackled by a distributed way of decoding, similar to the renormalization group (RG) decoders. In this paper, we introduce a decoding algorithm that combines the concept of RG decoding and neural network–based decoders. We tested the decoding performance under depolarizing noise with noiseless error syndrome measurements for the rotated surface code and compared against the blossom algorithm and a neural network–based decoder. We show that a similar level of decoding performance can be achieved between all tested decoders while providing a solution to the scalability issues of neural network–based decoders.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Haowei Shi ◽  
Min-Hsiu Hsieh ◽  
Saikat Guha ◽  
Zheshen Zhang ◽  
Quntao Zhuang

AbstractWe solve the entanglement-assisted (EA) classical capacity region of quantum multiple-access channels (MACs) with an arbitrary number of senders. As an example, we consider the bosonic thermal-loss MAC and solve the one-shot capacity region enabled by an entanglement source composed of sender-receiver pairwise two-mode squeezed vacuum states. The EA capacity region is strictly larger than the capacity region without entanglement-assistance. With two-mode squeezed vacuum states as the source and phase modulation as the encoding, we also design practical receiver protocols to realize the entanglement advantages. Four practical receiver designs, based on optical parametric amplifiers, are given and analyzed. In the parameter region of a large noise background, the receivers can enable a simultaneous rate advantage of 82.0% for each sender. Due to teleportation and superdense coding, our results for EA classical communication can be directly extended to EA quantum communication at half of the rates. Our work provides a unique and practical network communication scenario where entanglement can be beneficial.


Author(s):  
Lorenzo Miretti ◽  
Mari Kobayashi ◽  
David Gesbert ◽  
Paul De Kerret

2020 ◽  
Vol 66 (5) ◽  
pp. 2860-2871
Author(s):  
Erixhen Sula ◽  
Michael Gastpar ◽  
Gerhard Kramer

Sign in / Sign up

Export Citation Format

Share Document