squeezed vacuum
Recently Published Documents


TOTAL DOCUMENTS

697
(FIVE YEARS 115)

H-INDEX

45
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Andrei Rasputnyi ◽  
Denis Kopylov ◽  
Tatyana Murzina ◽  
Maria Chekhova

2021 ◽  
pp. 2100072
Author(s):  
Flávio de Oliveira Neto ◽  
Gentil Dias de Moraes Neto ◽  
Miled Hassan Youssef Moussa

2021 ◽  
Author(s):  
Armel Azangue Koumetio ◽  
Yiande Deuto Germain ◽  
Alain Giresse Tene ◽  
Martin Tchoffo

Abstract In the present paper, we study the influence of non-commutativity on entanglement in a system of two oscillators-modes in interaction with its environment. The considered system is a two-dimensional harmonic oscillator in non-commuting spatial coordinates coupled to its environment. The dynamics of the covariance matrix, the separability criteria for two Gaussian states in non-commutative space coordinates, and the logarithmic negativity are used to evaluate the quantum entanglement in the system, which is compared to the commutative space coordinates case. The result is applied for two initially entangled states, namely the squeezed vacuum and squeezed thermal states. It can be observed that the phenomenon of entanglement sudden death appears more early in the system for the case of squeezed vacuum state than in the case of squeezed thermal state. Thereafter, it is also observed that non-commutativity effects lead to an increasing of entanglement of initially entangled quantum states, and reduce the separability in the open quantum system. It turns out that a separable state in the usual commutative quantum mechanics might be entangled in non-commutative extension.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Jiahui Ning ◽  
Cunjin Liu ◽  
Min Xie ◽  
Shengguo Guan ◽  
Yanbei Cheng ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1353
Author(s):  
Alessandro Candeloro ◽  
Sholeh Razavian ◽  
Matteo Piccolini ◽  
Berihu Teklu ◽  
Stefano Olivares ◽  
...  

Active optical media leading to interaction Hamiltonians of the form H=λ˜(a+a†)ζ represent a crucial resource for quantum optical technology. In this paper, we address the characterization of those nonlinear media using quantum probes, as opposed to semiclassical ones. In particular, we investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling λ˜ and of the nonlinearity order ζ. Upon using tools from quantum estimation, we show that: (i) the two parameters are compatible, i.e., the may be jointly estimated without additional quantum noise; (ii) the use of squeezed probes improves precision at fixed overall energy of the probe; (iii) for low energy probes, squeezed vacuum represent the most convenient choice, whereas for increasing energy an optimal squeezing fraction may be determined; (iv) using optimized quantum probes, the scaling of the corresponding precision with energy improves, both for individual and joint estimation of the two parameters, compared to semiclassical coherent probes. We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.


2021 ◽  
Vol 29 (21) ◽  
pp. 34826
Author(s):  
Wei Li ◽  
Yaohua Peng ◽  
Xudong Yu ◽  
Lirong Chen ◽  
Yaohui Zheng

2021 ◽  
Vol 2056 (1) ◽  
pp. 012001
Author(s):  
N N Bogolyubov ◽  
A V Soldatov

Abstract A two-level quantum emitter with broken inversion symmetry driven by external semiclassical monochromatic high-frequency electromagnetic (e.g., laser) field and damped by squeezed vacuum reservoir with finite bandwidth is presented. The squeezed vacuum source is assumed to be either degenerate parametric oscillator (DPO) or a non-degenerate parametric oscillator (NDPO). It is shown that the shape of low-frequency fluorescence spectrum of the emitter can be effectively alternated by controlling the degree of the squeezed vacuum source degeneration and phase of the squeezing.


2021 ◽  
pp. 1-8
Author(s):  
Ebisa Mosisa Kanea ◽  

In this paper, quantum entanglement of correlated two-mode light generated by a three-level laser coupled to a two-mode squeezed vacuum reservoir is thoroughly analyzed using different inseparability criteria, using the master equation, we obtain the stochastic dierential equation and the correlation properties of the noise forces associated with the normal ordering. Next, we study the photon entanglement by considering different inseparability criteria. In particular, the criteria applied are Duan-Giedke-Cirac-Zoller (DGCZ) criterion, logarithmic negativity, Hillery-Zubairy, and Cauchy-Schwartz inequality and we found that the presence of the squeezing parameter leads to an increase in the degree of entanglement. Moreover, the linear gain coecient significantly achieved the degree of entanglement for the cavity radiation


Sign in / Sign up

Export Citation Format

Share Document