A Free Energy Perturbation Approach to Estimate the Intrinsic Solubilities of Drug-like Small Molecules

Author(s):  
Sayan Mondal ◽  
Gary Tresadern ◽  
Jeremy Greenwood ◽  
Byungchan Kim ◽  
Joe Kaus ◽  
...  

<p>Optimizing the solubility of small molecules is important in a wide variety of contexts, including in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral bioavailability. In such a context, solubility optimization cannot be successfully pursued by indiscriminate increases in polarity, which would likely reduce permeability and potency. Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes the solid-state form. Here we present a novel physics-based approach to predict the solubility of small molecules, that takes into account three-dimensional solid-state characteristics in addition to polarity. The calculated solubilities are in good agreement with experimental solubilities taken both from the literature as well as from several active pharmaceutical discovery projects. This computational approach enables strategies to optimize solubility by disrupting the three-dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal chemistry campaign.</p>

2019 ◽  
Author(s):  
Sayan Mondal ◽  
Gary Tresadern ◽  
Jeremy Greenwood ◽  
Byungchan Kim ◽  
Joe Kaus ◽  
...  

<p>Optimizing the solubility of small molecules is important in a wide variety of contexts, including in drug discovery where the optimization of aqueous solubility is often crucial to achieve oral bioavailability. In such a context, solubility optimization cannot be successfully pursued by indiscriminate increases in polarity, which would likely reduce permeability and potency. Moreover, increasing polarity may not even improve solubility itself in many cases, if it stabilizes the solid-state form. Here we present a novel physics-based approach to predict the solubility of small molecules, that takes into account three-dimensional solid-state characteristics in addition to polarity. The calculated solubilities are in good agreement with experimental solubilities taken both from the literature as well as from several active pharmaceutical discovery projects. This computational approach enables strategies to optimize solubility by disrupting the three-dimensional solid-state packing of novel chemical matter, illustrated here for an active medicinal chemistry campaign.</p>


Author(s):  
Alexios Zachariadis ◽  
Cesare A. Hall

This paper establishes a proven computational approach for open rotor configurations that can be used as a basis for further studies involving open rotor aerodynamics and design. Many of the difficulties encountered in the application of computational fluid dynamics to an open rotor engine arise due to the removal of the casing that is present in conventional aeroengine turbomachinery. In this work, an advanced three-dimensional Navier-Stokes solver is applied to the open rotor. The approach needed to accurately capture the aerodynamics is investigated with particular attention to the mesh configuration and the specification of boundary conditions. A new three-step meshing strategy for generating the mesh and the most suitable type of far-field boundary condition are discussed. A control volume analysis approach is proposed for post-processing the numerical results for rotor performance. The capabilities of the solver and the applied methodology are demonstrated at both cruise and take-off operating conditions. The comparison of computational results with experimental measurements shows good agreement for both data trend and magnitudes.


Sign in / Sign up

Export Citation Format

Share Document