Photoinduced Charge Transfer Dynamics in Carotenoid-Porphyrin-C60 Triad via the Linearized Semiclassical Nonequilibrium Fermi's Golden Rule

Author(s):  
Zhengqing Tong ◽  
Margaret S. Cheung ◽  
Barry D. Dunietz ◽  
Eitan Geva ◽  
Xiang Sun

The nonequilibrium Fermi’s golden rule (NE-FGR) describes the time-dependent rate coefficient for electronic transitions, when the nuclear degrees of freedom start out in a <i>nonequilibrium</i> state. In this letter, the linearized semiclassical (LSC) approximation of the NE-FGR is used to calculate the photoinduced charge transfer rates in the carotenoid-porphyrin-C<sub>60</sub> molecular triad dissolved in explicit tetrahydrofuran. The initial nonequilibrium state corresponds to impulsive photoexcitation from the equilibrated ground-state to the ππ* state, and the porphyrin-to-C<sub>60</sub> and the carotenoid-to-C<sub>60</sub> charge transfer rates are calculated. Our results show that accounting for the nonequilibrium nature of the initial state significantly enhances the transition rate of the porphyrin-to-C<sub>60</sub> CT process. We also derive the instantaneous Marcus theory (IMT) from LSC NE-FGR, which casts the CT rate coefficients in terms of a Marcus-like expression, with explicitly time-dependent reorganization energy and reaction free energy. IMT is found to reproduce the CT rates in the system under consideration remarkably well.

2020 ◽  
Author(s):  
Zhubin Hu ◽  
Zhengqing Tong ◽  
Margaret S. Cheung ◽  
Barry D. Dunietz ◽  
Eitan Geva ◽  
...  

The nonequilibrium Fermi’s golden rule (NE-FGR) describes the time-dependent rate coefficient for electronic transitions, when the nuclear degrees of freedom start out in a <i>nonequilibrium</i> state. In this letter, the linearized semiclassical (LSC) approximation of the NE-FGR is used to calculate the photoinduced charge transfer rates in the carotenoid-porphyrin-C<sub>60</sub> molecular triad dissolved in explicit tetrahydrofuran. The initial nonequilibrium state corresponds to impulsive photoexcitation from the equilibrated ground-state to the ππ* state, and the porphyrin-to-C<sub>60</sub> and the carotenoid-to-C<sub>60</sub> charge transfer rates are calculated. Our results show that accounting for the nonequilibrium nature of the initial state significantly enhances the transition rate of the porphyrin-to-C<sub>60</sub> CT process. We also derive the instantaneous Marcus theory (IMT) from LSC NE-FGR, which casts the CT rate coefficients in terms of a Marcus-like expression, with explicitly time-dependent reorganization energy and reaction free energy. IMT is found to reproduce the CT rates in the system under consideration remarkably well.


2020 ◽  
Author(s):  
Zhubin Hu ◽  
Zhengqing Tong ◽  
Margaret S. Cheung ◽  
Barry D. Dunietz ◽  
Eitan Geva ◽  
...  

The nonequilibrium Fermi’s golden rule (NE-FGR) describes the time-dependent rate coefficient for electronic transitions, when the nuclear degrees of freedom start out in a <i>nonequilibrium</i> state. In this letter, the linearized semiclassical (LSC) approximation of the NE-FGR is used to calculate the photoinduced charge transfer rates in the carotenoid-porphyrin-C<sub>60</sub> molecular triad dissolved in explicit tetrahydrofuran. The initial nonequilibrium state corresponds to impulsive photoexcitation from the equilibrated ground-state to the ππ* state, and the porphyrin-to-C<sub>60</sub> and the carotenoid-to-C<sub>60</sub> charge transfer rates are calculated. Our results show that accounting for the nonequilibrium nature of the initial state significantly enhances the transition rate of the porphyrin-to-C<sub>60</sub> CT process. We also derive the instantaneous Marcus theory (IMT) from LSC NE-FGR, which casts the CT rate coefficients in terms of a Marcus-like expression, with explicitly time-dependent reorganization energy and reaction free energy. IMT is found to reproduce the CT rates in the system under consideration remarkably well.


2020 ◽  
Author(s):  
Sharma Yamijala ◽  
Pengfei Huo

We apply direct non-adiabatic dynamics simulations to investigate photoinduced charge transfer reactions. Our approach is based on the mixed quantum-classical fewest switches surface hopping (FSSH) method that treats the transferring electron through time-dependent density functional theory and the nuclei classically. The photoinduced excited state is modeled as a transferring single-electron that initially occupies the LUMO of the donor molecule/moiety. This single-particle electronic wavefunction is then propagated quantum mechanically by solving the time-dependent Schr\"odinger equation in the basis of the instantaneous molecular orbitals (MOs) of the entire system. The non-adiabatic transitions among electronic states are modeled using the FSSH approach within the classical-path approximation. We apply this approach to simulate the photoinduced charge transfer dynamics in a few well-characterized molecular systems. Our results are in excellent agreement with both the experimental measurements and high-level (yet expensive) theoretical results.


2020 ◽  
Author(s):  
Sharma Yamijala ◽  
Pengfei Huo

We apply direct non-adiabatic dynamics simulations to investigate photoinduced charge transfer reactions. Our approach is based on the mixed quantum-classical fewest switches surface hopping (FSSH) method that treats the transferring electron through time-dependent density functional theory and the nuclei classically. The photoinduced excited state is modeled as a transferring single-electron that initially occupies the LUMO of the donor molecule/moiety. This single-particle electronic wavefunction is then propagated quantum mechanically by solving the time-dependent Schr\"odinger equation in the basis of the instantaneous molecular orbitals (MOs) of the entire system. The non-adiabatic transitions among electronic states are modeled using the FSSH approach within the classical-path approximation. We apply this approach to simulate the photoinduced charge transfer dynamics in a few well-characterized molecular systems. Our results are in excellent agreement with both the experimental measurements and high-level (yet expensive) theoretical results.


1996 ◽  
Vol 93 ◽  
pp. 1697-1713 ◽  
Author(s):  
P Changenet ◽  
P Plaza ◽  
MM Martin ◽  
YH Meyer ◽  
W Rettig

Sign in / Sign up

Export Citation Format

Share Document