scholarly journals Potential Energy Curves of Molecular Nitrogen for Singly and Doubly Ionized States with Core and Valence Holes

Author(s):  
Debarati Bhattacharya ◽  
K. R. Shamasundar ◽  
Agapi Emmanouilidou

<p>Our manuscript, presents the computation of potential energy curves of all possible singly and doubly ionized states of molecular nitrogen. Accurate representation of the potential energy curves of ionized states of N<sub>2</sub> is essential to explicitly treat coupled electron-nuclear dynamics. In this work, we compute the potential energy curves of the valence as well as the core and inner valence singly and doubly ionized states of N<sub>2</sub>. These curves pave way to study the interplay between photoionization and Auger spectra when molecular nitrogen interacts with free electron lasers.</p><p>Computation of inner valence or core ionized potential energy curve is not trivial due to the well-known problem of variational collapse of the wavefunction to the lowest energy state. We circumvent this problem by implementing a two-step optimization scheme within the multi-configurational self-consistent field approach. Such a two-step optimization scheme has been previously implemented to compute potential energy curves of core ionized states of di-atomic molecules with one hole. Herein, we show the general applicability of this two-step optimization method by computing potential energy curves of both singly and doubly ionized states of N<sub>2 </sub>with valence and core holes. Calculation of potential energy curves for core ionized polyatomic systems are scarce. Moreover, our approach is system independent and can be easily extended to calculate multiple-core ionized states. To the best of our knowledge, this is the first calculation of potential energy curves for doubly ionized states of a diatomic molecule<sub> </sub>with two core (or inner valence) holes.</p>

2021 ◽  
Author(s):  
Debarati Bhattacharya ◽  
K. R. Shamasundar ◽  
Agapi Emmanouilidou

<p>Our manuscript, presents the computation of potential energy curves of all possible singly and doubly ionized states of molecular nitrogen. Accurate representation of the potential energy curves of ionized states of N<sub>2</sub> is essential to explicitly treat coupled electron-nuclear dynamics. In this work, we compute the potential energy curves of the valence as well as the core and inner valence singly and doubly ionized states of N<sub>2</sub>. These curves pave way to study the interplay between photoionization and Auger spectra when molecular nitrogen interacts with free electron lasers.</p><p>Computation of inner valence or core ionized potential energy curve is not trivial due to the well-known problem of variational collapse of the wavefunction to the lowest energy state. We circumvent this problem by implementing a two-step optimization scheme within the multi-configurational self-consistent field approach. Such a two-step optimization scheme has been previously implemented to compute potential energy curves of core ionized states of di-atomic molecules with one hole. Herein, we show the general applicability of this two-step optimization method by computing potential energy curves of both singly and doubly ionized states of N<sub>2 </sub>with valence and core holes. Calculation of potential energy curves for core ionized polyatomic systems are scarce. Moreover, our approach is system independent and can be easily extended to calculate multiple-core ionized states. To the best of our knowledge, this is the first calculation of potential energy curves for doubly ionized states of a diatomic molecule<sub> </sub>with two core (or inner valence) holes.</p>


1972 ◽  
Vol 25 (2) ◽  
pp. 231 ◽  
Author(s):  
DB Matthews

Electric fields at the metal-electrolyte interface are very high (of the order of 107 V/cm) and one intuitively expects that these fields should have a profound influence on the movement of charged species such as ions and electrons at the interface. Qualitatively, such field effects manifest themselves as deviations from linearity of Tafel plots or as a dependence of the symmetry factor on electrode potential. It is shown that Gurney's potential energy curve representation of charge transfer reactions yields only small changes in β over a wide range of potential, with the anharmonic (Morse) curves showing smaller changes than the harmonic (parabolic) curves. Superposition of the double layer electric field on these potential energy curves increases the curvature of the Tafel plots, but the effect is still not very large, being within the limits of uncertainty in determining the correct form of the potential energy curves. The effect of electric field on electron transfer is considered both from the viewpoint of change in electron transfer distance arising from a dependence of coordinates of the activated state on potential and from the viewpoint of a direct effect on the electron transfer barrier (analogous to field electron emission). The field emission effects are found to be even less than the effects of the field on the proton transfer potential energy barrier.


2021 ◽  
Vol 125 (36) ◽  
pp. 7778-7787
Author(s):  
Debarati Bhattacharya ◽  
K. R. Shamasundar ◽  
Agapi Emmanouilidou

1979 ◽  
Vol 66 (3) ◽  
pp. 523-526 ◽  
Author(s):  
Okio Nomura ◽  
Suehiro Iwata

Sign in / Sign up

Export Citation Format

Share Document