scholarly journals An Amphiphilic Polymer-Supported Strategy Enables Chemical Transformations Under Anhydrous Conditions for DNA-Encoded Library Synthesis

Author(s):  
Yves Ruff ◽  
Roberto Martinez ◽  
Xavier Pellé ◽  
Pierre Nimsgern ◽  
Maxim Ratnikov ◽  
...  

Herein, we describe the development of a practical catch-and release methodology utilizing a cationic, amphiphilic PEG-based polymer to perform chemical transformations on immobilized DNA conjugates under anhydrous conditions. We demonstrate the usefulness of our APTAC (<u>a</u>mphiphilic <u>p</u>olymer-facilitated <u>t</u>ransformations under <u>a</u>nhydrous <u>c</u>onditions) approach by performing several challenging transformations on DNA-conjugated small molecules in pure organic solvents: the addition of a carbanion equivalent to a DNA-conjugated ketone in tetrahydrofuran, the synthesis of saturated heterocycles using the tin (Sn) amine protocol (SnAP) in dichloromethane and the dual-catalytic (Ir/Ni) metallaphotoredox decarboxylative cross-coupling of carboxylic acids to DNA-conjugated aryl halides in DMSO. In addition, we demonstrate the feasibility of the latter in multititer-plate format.

Author(s):  
Yves Ruff ◽  
Roberto Martinez ◽  
Xavier Pellé ◽  
Pierre Nimsgern ◽  
Pascale Fille ◽  
...  

Herein, we describe the development of a practical catch-and release methodology utilizing a cationic, amphiphilic PEG-based polymer to perform chemical transformations on immobilized DNA conjugates under anhydrous conditions. We demonstrate the usefulness of our APTAC (<u>a</u>mphiphilic <u>p</u>olymer-facilitated <u>t</u>ransformations under <u>a</u>nhydrous <u>c</u>onditions) approach by performing several challenging transformations on DNA-conjugated small molecules in pure organic solvents: the addition of a carbanion equivalent to a DNA-conjugated ketone in tetrahydrofuran, the synthesis of saturated heterocycles using the tin (Sn) amine protocol (SnAP) in dichloromethane and the dual-catalytic (Ir/Ni) metallaphotoredox decarboxylative cross-coupling of carboxylic acids to DNA-conjugated aryl halides in DMSO. In addition, we demonstrate the feasibility of the latter in multititer-plate format.


2019 ◽  
Author(s):  
Yves Ruff ◽  
Roberto Martinez ◽  
Xavier Pellé ◽  
Pierre Nimsgern ◽  
Maxim Ratnikov ◽  
...  

Herein, we describe the development of a practical catch-and release methodology utilizing a cationic, amphiphilic PEG-based polymer to perform chemical transformations on immobilized DNA conjugates under anhydrous conditions. We demonstrate the usefulness of our APTAC (<u>a</u>mphiphilic <u>p</u>olymer-facilitated <u>t</u>ransformations under <u>a</u>nhydrous <u>c</u>onditions) approach by performing several challenging transformations on DNA-conjugated small molecules in pure organic solvents: the addition of a carbanion equivalent to a DNA-conjugated ketone in tetrahydrofuran, the synthesis of saturated heterocycles using the tin (Sn) amine protocol (SnAP) in dichloromethane and the dual-catalytic (Ir/Ni) metallaphotoredox decarboxylative cross-coupling of carboxylic acids to DNA-conjugated aryl halides in DMSO. In addition, we demonstrate the feasibility of the latter in multititer-plate format.


2019 ◽  
Author(s):  
Yves Ruff ◽  
Roberto Martinez ◽  
Xavier Pellé ◽  
Pierre Nimsgern ◽  
Pascale Fille ◽  
...  

Herein, we describe the development of a practical catch-and release methodology utilizing a cationic, amphiphilic PEG-based polymer to perform chemical transformations on immobilized DNA conjugates under anhydrous conditions. We demonstrate the usefulness of our APTAC (<u>a</u>mphiphilic <u>p</u>olymer-facilitated <u>t</u>ransformations under <u>a</u>nhydrous <u>c</u>onditions) approach by performing several challenging transformations on DNA-conjugated small molecules in pure organic solvents: the addition of a carbanion equivalent to a DNA-conjugated ketone in tetrahydrofuran, the synthesis of saturated heterocycles using the tin (Sn) amine protocol (SnAP) in dichloromethane and the dual-catalytic (Ir/Ni) metallaphotoredox decarboxylative cross-coupling of carboxylic acids to DNA-conjugated aryl halides in DMSO. In addition, we demonstrate the feasibility of the latter in multititer-plate format.


Author(s):  
Yves Ruff ◽  
Roberto Martinez ◽  
Xavier Pellé ◽  
Pierre Nimsgern ◽  
Pascale Fille ◽  
...  

Herein, we describe the development of a practical catch-and release methodology utilizing a cationic, amphiphilic PEG-based polymer to perform chemical transformations on immobilized DNA conjugates under anhydrous conditions. We demonstrate the usefulness of our APTAC (<u>a</u>mphiphilic <u>p</u>olymer-facilitated <u>t</u>ransformations under <u>a</u>nhydrous <u>c</u>onditions) approach by performing several challenging transformations on DNA-conjugated small molecules in pure organic solvents: the addition of a carbanion equivalent to a DNA-conjugated ketone in tetrahydrofuran, the synthesis of saturated heterocycles using the tin (Sn) amine protocol (SnAP) in dichloromethane and the dual-catalytic (Ir/Ni) metallaphotoredox decarboxylative cross-coupling of carboxylic acids to DNA-conjugated aryl halides in DMSO. In addition, we demonstrate the feasibility of the latter in multititer-plate format.


2019 ◽  
Author(s):  
Yves Ruff ◽  
Roberto Martinez ◽  
Xavier Pellé ◽  
Pierre Nimsgern ◽  
Maxim Ratnikov ◽  
...  

Herein, we describe the development of a practical catch-and release methodology utilizing a cationic, amphiphilic PEG-based polymer to perform chemical transformations on immobilized DNA conjugates under anhydrous conditions. We demonstrate the usefulness of our ATAC (<u>a</u>mphiphilic polymers for <u>t</u>ransformations under <u>a</u>nhydrous <u>c</u>onditions) approach by performing several challenging transformations on DNA-conjugated small molecules in pure organic solvents: the addition of a carbanion equivalent to a DNA-conjugated ketone in tetrahydrofuran, the synthesis of saturated heterocycles using the tin (Sn) amine protocol (SnAP) in dichloromethane and the dual-catalytic (Ir/Ni) metallaphotoredox decarboxylative cross-coupling of carboxylic acids to DNA-conjugated aryl halides in DMSO. In addition, we demonstrate the feasibility of the latter in multititer-plate format.


2020 ◽  
Vol 22 (3) ◽  
pp. 120-128 ◽  
Author(s):  
Yves Ruff ◽  
Roberto Martinez ◽  
Xavier Pellé ◽  
Pierre Nimsgern ◽  
Pascale Fille ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (24) ◽  
pp. 18960-18971 ◽  
Author(s):  
Gina M. Roberts ◽  
Wenya Lu ◽  
L. Keith Woo

Aqueous solutions of common and inexpensive surfactants (e.g. SDS and CTAB) are surveyed as an alternative to organic solvents in Sonogashira cross-coupling. Aryl-bromide substrates are best coupled under Cu-free conditions.


Sign in / Sign up

Export Citation Format

Share Document