Active Object Detection Model with Deep Neural Network for Object Recognition

2018 ◽  
Vol 6 (9) ◽  
pp. 265-269
Author(s):  
R. Kapila ◽  
H. Wadhwa
Author(s):  
Fereshteh S. Bashiri ◽  
Eric LaRose ◽  
Jonathan C. Badger ◽  
Roshan M. D’Souza ◽  
Zeyun Yu ◽  
...  

Author(s):  
W. Yuan ◽  
Z. Fan ◽  
X. Yuan ◽  
J. Gong ◽  
R. Shibasaki

Abstract. Dense image matching is essential to photogrammetry applications, including Digital Surface Model (DSM) generation, three dimensional (3D) reconstruction, and object detection and recognition. The development of an efficient and robust method for dense image matching has been one of the technical challenges due to high variations in illumination and ground features of aerial images of large areas. Nowadays, due to the development of deep learning technology, deep neural network-based algorithms outperform traditional methods on a variety of tasks such as object detection, semantic segmentation and stereo matching. The proposed network includes cost-volume computation, cost-volume aggregation, and disparity prediction. It starts with a pre-trained VGG-16 network as a backend and using the U-net architecture with nine layers for feature map extraction and a correlation layer for cost volume calculation, after that a guided filter based cost aggregation is adopted for cost volume filtering and finally the soft Argmax function is utilized for disparity prediction. The experimental conducted on a UAV dataset demonstrated that the proposed method achieved the RMSE (root mean square error) of the reprojection error better than 1 pixel in image coordinate and in-ground positioning accuracy within 2.5 ground sample distance. The comparison experiments on KITTI 2015 dataset shows the proposed unsupervised method even comparably with other supervised methods.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 529 ◽  
Author(s):  
Hui Zeng ◽  
Bin Yang ◽  
Xiuqing Wang ◽  
Jiwei Liu ◽  
Dongmei Fu

With the development of low-cost RGB-D (Red Green Blue-Depth) sensors, RGB-D object recognition has attracted more and more researchers’ attention in recent years. The deep learning technique has become popular in the field of image analysis and has achieved competitive results. To make full use of the effective identification information in the RGB and depth images, we propose a multi-modal deep neural network and a DS (Dempster Shafer) evidence theory based RGB-D object recognition method. First, the RGB and depth images are preprocessed and two convolutional neural networks are trained, respectively. Next, we perform multi-modal feature learning using the proposed quadruplet samples based objective function to fine-tune the network parameters. Then, two probability classification results are obtained using two sigmoid SVMs (Support Vector Machines) with the learned RGB and depth features. Finally, the DS evidence theory based decision fusion method is used for integrating the two classification results. Compared with other RGB-D object recognition methods, our proposed method adopts two fusion strategies: Multi-modal feature learning and DS decision fusion. Both the discriminative information of each modality and the correlation information between the two modalities are exploited. Extensive experimental results have validated the effectiveness of the proposed method.


2019 ◽  
Vol 5 (5) ◽  
pp. eaav7903 ◽  
Author(s):  
Khaled Nasr ◽  
Pooja Viswanathan ◽  
Andreas Nieder

Humans and animals have a “number sense,” an innate capability to intuitively assess the number of visual items in a set, its numerosity. This capability implies that mechanisms to extract numerosity indwell the brain’s visual system, which is primarily concerned with visual object recognition. Here, we show that network units tuned to abstract numerosity, and therefore reminiscent of real number neurons, spontaneously emerge in a biologically inspired deep neural network that was merely trained on visual object recognition. These numerosity-tuned units underlay the network’s number discrimination performance that showed all the characteristics of human and animal number discriminations as predicted by the Weber-Fechner law. These findings explain the spontaneous emergence of the number sense based on mechanisms inherent to the visual system.


Sign in / Sign up

Export Citation Format

Share Document