Nature Inspired Meta-Heuristic Algorithm For Reduction in Real Power Loss and Improvement in Voltage Stability Limit of An Interconnected Power System Network

2016 ◽  
Vol 4 (2) ◽  
pp. 46
Author(s):  
BALACHENNAIAH P. ◽  
SURYAKALAVATHI M. ◽  
◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Luke Jebaraj ◽  
Charles Christober Asir Rajan ◽  
Kumar Sriram

This paper proposes an application of firefly algorithm (FA) based extended voltage stability margin and minimization of active (or) real power loss incorporating Series-Shunt flexible AC transmission system (FACTS) controller named as static synchronous series compensator (SSSC) combined with static var compensator (SVC). A circuit model of SSSC and variable susceptance model of SVC are utilized to control the line power flows and bus voltage magnitudes, respectively, for real power loss minimization and voltage stability limit improvement. The line quality proximity index (LQP) is used to assess the voltage stability of a power system. The values of voltage profile improvement, real power loss minimization, and the location and size of FACTS devices were optimized by FA. The results are obtained from the IEEE 14- and 30-bus test case systems under different operating conditions and compared with other leading evolutionary techniques such as shuffled frog leaping algorithm (SFLA), differential evolution (DE) and particle swarm optimization (PSO).


Author(s):  
Zulkiffli Bin Abdul Hamid ◽  
Sylvester Jipinus ◽  
Ismail Musirin ◽  
Muhammad Murtadha Othman ◽  
Rahmatul Hidayah Salimin

This paper proposes an optimization technique for distributed generation (DG) sizing in power system. The DG placement was done through Loss Sensitive (LS) technique to determine the suitable locations. The LS index is calculated such that the change in power losses is divided with generation increment and a rank of buses is obtained to identify the suitable locations for DG placement.  Subsequently, a meta-heuristic algorithm, known as Firefly Algorithm (FA) was run to obtain the optimal size or capacity of the DG. The installation takes into consideration the aspect of voltage stability in terms of total real power losses and voltage profiles to be improved in the distribution system. Based on the experiment, the real power losses and voltage profiles were improved significantly as a result of the DG placement. In addition, the installation could prevent the power system from collapse as the reactive loading was increased to maximum.


Sign in / Sign up

Export Citation Format

Share Document