STATIONARY DYNAMIC RESPONSE OF A CIRCULAR RIGID FOUNDATION SUPPORTED BY A FLEXIBLE PILE AND A HALF-SPACE SUBJECTED TO A VERTICAL INCIDENT WAVE FIELD

Author(s):  
Luis Filipe do Vale Lima ◽  
Josue Labaki ◽  
EUCLIDES MESQUITA
Author(s):  
Deji Ojetola ◽  
Hamid R. Hamidzadeh

Blasts and explosions occur in many activities that are either man-made or nature induced. The effect of the blasts could have a residual or devastating effect on the buildings at some distance within the vicinity of the explosion. In this investigation, an analytical solution for the time response of a rigid foundation subjected to a distant blast is considered. The medium is considered to be an elastic half space. A formal solution to the wave propagations on the medium is obtained by the integral transform method. To achieve numerical results for this case, an effective numerical technique has been developed for calculation of the integrals represented in the inversion of the transformed relations. Time functions for the vertical and radial displacements of the surface of the elastic half space due to a distant blast load are determined. Mathematical procedures for determination of the dynamic response of the surface of an elastic half-space subjected to the blast along with numerical results for displacements of a rigid foundation are provided.


1997 ◽  
Vol 64 (1) ◽  
pp. 50-58 ◽  
Author(s):  
Ruichong Zhang ◽  
Liyang Zhang ◽  
Masanobu Shinozuka

Seismic waves in a layered half-space with lateral inhomogeneities, generated by a buried seismic dislocation source, are investigated in these two consecutive papers. In the first paper, the problem is formulated and a corresponding approach to solve the problem is provided. Specifically, the elastic parameters in the laterally inhomogeneous layer, such as P and S wave speeds and density, are separated by the mean and the deviation parts. The mean part is constant while the deviation part, which is much smaller compared to the mean part, is a function of lateral coordinates. Using the first-order perturbation approach, it is shown that the total wave field may be obtained as a superposition of the mean wave field and the scattered wave field. The mean wave field is obtainable as a response solution for a perfectly layered half-space (without lateral inhomogeneities) subjected to a buried seismic dislocation source. The scattered wave field is obtained as a response solution for the same layered half-space as used in the mean wave field, but is subjected to the equivalent fictitious distributed body forces that mathematically replace the lateral inhomogeneities. These fictitious body forces have the same effects as the existence of lateral inhomogeneities and can be evaluated as a function of the inhomogeneity parameters and the mean wave fleld. The explicit expressions for the responses in both the mean and the scattered wave fields are derived with the aid of the integral transform approach and wave propagation analysis.


1982 ◽  
Vol 108 (1) ◽  
pp. 133-154 ◽  
Author(s):  
William L. Whittaker ◽  
Paul Christiano

2019 ◽  
Vol 106 ◽  
pp. 296-303
Author(s):  
Changjie Zheng ◽  
Rui He ◽  
George Kouretzis ◽  
Xuanming Ding

Sign in / Sign up

Export Citation Format

Share Document