rigid foundation
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 38)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 943 (1) ◽  
pp. 012024
Author(s):  
L T Han ◽  
Y P Su ◽  
J W Chen ◽  
N Ge

Abstract To study the influence of soil-well bore-shaft tower interaction on the seismic response of the shaft tower. A numerical analysis model of rigid foundation (without considering the interaction of soil-well bore-shaft tower ) and II site considering soil-well bore-shaft tower interaction is established by the finite element analysis method. The mode period, tower layer displacement and inter-story displacement of shaft tower are analyzed. The results show that, compared with rigid foundation, considering the interaction of soil-well bore-shaft tower, the mode period of the system is prolonged, the tower layer displacement and inter-story displacement of the shaft tower is enlarged. In the engineering design of shaft tower, the influence of the soil-well bore-shaft tower interaction on the seismic response of the shaft tower cannot be ignored.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Feng Liu ◽  
Panpan Guo ◽  
Haibo Hu ◽  
Chengwei Zhu ◽  
Xiaonan Gong

This paper investigates the loading behavior and soil-structure interaction associated with a floating stone column under rigid foundation by using the discrete element method (DEM). The aggregates and soft soil are simulated by particles with different sizes. The rigid foundation is simulated by two loading plates at the same position with the same velocity. The stress distributions and microscopic interaction between the column and soft soil are investigated. The vertical stress of the column increases with settlement and decreases with the depth. The position of the column with large radial stress also has large deformation, which decreases from top to bottom. The vertical and radial stresses of the soft soil increase with settlement, and the radial stress shows high value in the upper part of soft soil. The stress concentration ratio is obtained by two loading plates, which decreases from 2.5 to 1.55 during loading. The interaction between column and soft soil shows that the column does not penetrate into the underlying stratum but drags the surrounding soil down.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110414
Author(s):  
Fatimah Salem Bayones ◽  
Nahed Sayed Hussein ◽  
Abdelmooty Mohamed Abd-Alla ◽  
Amnah Mohamed Alharbi

Introduction: In this paper, a mathematical model of Love-type wave propagation in a heterogeneous transversely isotropic elastic layer subjected to initial stress and rotation of the resting on a rigid foundation. Frequency equation of Love-type wave is obtained in closed form. The material constants and initial stress have been taken as space dependent and arbitrary functions of depth in the respective media. Objectives: The dispersion equation is determined to study the effect of different types of parameters such as inhomogeneity, initial stress, rotation, wave number, the phase velocity on the Love-type wave propagation. Methods: The analytical solution has been obtained, we have used the separation of variables, method and the numerical solution using the bisection method implemented in MATLAB. Results: We present a general dispersion relation to describe the impacts as the propagation of Love-type waves in the structures. Numerical results analyzing the dispersion equation are discussed and presented graphically. Moreover, the obtained dispersion relation is found in well agreement with the classical case in isotropic and transversely isotropic layer resting on a rigid foundation. Finally, some graphical presentations have been made to assess the effects of various parameters in the plane wave propagation in elastic media of different nature.


Author(s):  
Liguo Jin ◽  
Liting Du ◽  
Haiyan Wang

This paper presents a closed-form analytical solution for the dynamic response of two independent SDOF oscillators standing on one flexible foundation embedded in an elastic half-space and excited by plane SH waves. The solution is obtained by the wave function expansion method and is verified by comparison with the results of the special cases of a rigid foundation and the published research result of a flexible foundation. The model is utilized to investigate how the foundation stiffness influences the system response. The results show that there will be a significant interaction between the two independent structures on one flexible foundation and the intensity of the interaction is mainly dependent on foundation stiffness and structural stiffness. For a system with more flexible foundation, strong interaction will exist between the two structures; larger structural stiffness will also lead to a strong interaction between the two structures. When the structural mass and the structural stiffness are all larger, the flexible foundation cannot be treated as a rigid foundation even if the foundation stiffness is many times larger than that of soil. This model may be useful to get insight into the effects of foundation flexibility on the interaction of two independent structures standing on one flexible foundation.


Sign in / Sign up

Export Citation Format

Share Document