dislocation source
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 1)

MAUSAM ◽  
2021 ◽  
Vol 67 (3) ◽  
pp. 659-668
Author(s):  
AJIT DE ◽  
A. ROY ◽  
M. MITRA ◽  
R. K. BHATTACHARYA

The method of eigen function expansion has been used in the present study to compute synthetic or theoretical seismogram in layered elastic half-space of real earth model. Simple dislocation source model has been considered. The transverse (SH) or radial and vertical (P-SV) components of displacement field have been computed as summed modes and compared by using both exact and numerical techniques. The methods used in the study, include exact evaluation by propagator matrix approach using Reflection-Transmission coefficients as well as numerical computations using Runge-Kutta method of order 4. The specialty of the present study is to evaluate approximate displacement field for the earth models with homogeneous and / or inhomogeneous layers. The normalization technique has been used in the study to control the overflow errors. The study has an advantage to get an idea of earth structure or source model by an inverse iterative technique.  


2021 ◽  
Author(s):  
Kohei Hotta ◽  
Shigekazu Kusumoto ◽  
Hidenori Takahashi ◽  
Yuichi S Hayakawa

Abstract We modeled vertical deformation detected from leveling survey in Jigokudani valley, Tateyama volcano, central Japan. In Jigokudani valley, uplift of 4 cm/year was previously detected during the period from 2007 to 2010 by Interferometric Synthetic Aperture Radar (InSAR). To confirm whether this inflation has continued to the present, we conducted leveling survey in Jigokudani valley since 2015. Most bench marks showed subsidence up to 5.6 cm during the four-year period from October 2016 to September 2020, while a bench mark locates at the center of the leveling route uniquely showed uplift of 1.6 cm. We applied a dislocation source model to the deformation using a grid search method. A crack with a length of 350 m, a width of 100 m, a strike of N117°E and a dip of 61° is located at a depth of 50 m near the center of Jigokudani valley (Koya jigoku and the new fumarolic area) where highly activating recently. Closing of the crack of 344 cm yields volume decreases of 120,400 m3. Striking direction of the crack is parallel to the line of which are old explosion craters (Mikurigaike and Midorigaike ponds) and corresponds to current maximum compressive stress field in the region of Hida Mountains including Tateyama volcano. The deformation source of the previous period from 2007 to 2010 detected from InSAR was estimated to be at a depth of 50 m and a gas chamber was correspondingly found from the audio-frequency magnetotelluric (AMT) survey. The estimated crack in this study is also located at a similar position of the gas chamber which was also identified from AMT survey. During the period from 2015 to 2016, the crack opened (i.e., inflated) and the inflation stopped during the next one-year period from 2016 to 2017. During the period from 2017 to 2020, the crack turned to closing (i.e., deflation), probably because of the increase in emission of volcanic fluid or gas with a formation of a new crater at the western side of Jigokudani valley (Yahata jigoku) during the period from 2017 to 2018.


2021 ◽  
Vol 118 (37) ◽  
pp. e2110596118
Author(s):  
Yan Lu ◽  
Yu-Heng Zhang ◽  
En Ma ◽  
Wei-Zhong Han

Body-centered cubic metals including steels and refractory metals suffer from an abrupt ductile-to-brittle transition (DBT) at a critical temperature, hampering their performance and applications. Temperature-dependent dislocation mobility and dislocation nucleation have been proposed as the potential factors responsible for the DBT. However, the origin of this sudden switch from toughness to brittleness still remains a mystery. Here, we discover that the ratio of screw dislocation velocity to edge dislocation velocity is a controlling factor responsible for the DBT. A physical model was conceived to correlate the efficiency of Frank–Read dislocation source with the relative mobility of screw versus edge dislocations. A sufficiently high relative mobility is a prerequisite for the coordinated movement of screw and edge segments to sustain dislocation multiplication. Nanoindentation experiments found that DBT in chromium requires a critical mobility ratio of 0.7, above which the dislocation sources transition from disposable to regeneratable ones. The proposed model is also supported by the experimental results of iron, tungsten, and aluminum.


2021 ◽  
Vol 118 (30) ◽  
pp. e2025657118
Author(s):  
Xiaolong Ma ◽  
Wesley Higgins ◽  
Zhiyuan Liang ◽  
Dexin Zhao ◽  
George M. Pharr ◽  
...  

The origin of the indentation size effect has been extensively researched over the last three decades, following the establishment of nanoindentation as a broadly used small-scale mechanical testing technique that enables hardness measurements at submicrometer scales. However, a mechanistic understanding of the indentation size effect based on direct experimental observations at the dislocation level remains limited due to difficulties in observing and quantifying the dislocation structures that form underneath indents using conventional microscopy techniques. Here, we employ precession electron beam diffraction microscopy to “look beneath the surface,” revealing the dislocation characteristics (e.g., distribution and total length) as a function of indentation depth for a single crystal of nickel. At smaller depths, individual dislocation lines can be resolved, and the dislocation distribution is quite diffuse. The indentation size effect deviates from the Nix–Gao model and is controlled by dislocation source starvation, as the dislocations are very mobile and glide away from the indented zone, leaving behind a relatively low dislocation density in the plastically deformed volume. At larger depths, dislocations become highly entangled and self-arrange to form subgrain boundaries. In this depth range, the Nix–Gao model provides a rational description because the entanglements and subgrain boundaries effectively confine dislocation movement to a small hemispherical volume beneath the contact impression, leading to dislocation interaction hardening. The work highlights the critical role of dislocation structural development in the small-scale mechanistic transition in indentation size effect and its importance in understanding the plastic deformation of materials at the submicron scale.


Author(s):  
Juan Li ◽  
G. M. Pharr ◽  
C. Kirchlechner

AbstractPop-in statistics from nanoindentation with spherical indenters are used to determine the stress required to activate dislocation sources in twin boundaries (TBs) in copper and its alloys. The TB source activation stress is smaller than that needed for bulk single crystals, irrespective of the indenter size, dislocation density and stacking fault energy. Because an array of pre-existing Frank partial dislocations is present at a TB, we propose that dislocation emission from the TB occurs by the Frank partials splitting into Shockley partials moving along the TB plane and perfect lattice dislocations, both of which are mobile. The proposed mechanism is supported by recent high resolution transmission electron microscopy images in deformed nanotwinned (NT) metals and may help to explain some of the superior properties of nanotwinned metals (e.g. high strength and good ductility), as well as the process of detwinning by the collective formation and motion of Shockley partial dislocations along TBs. Graphic abstract


Author(s):  
Ken'ichi Yamazaki

Summary The piezomagnetic effect is defined as a change in magnetisation with applied stress. Changes in the geomagnetic field caused by the piezomagnetic effect, referred to as the piezomagnetic field, have been theoretically estimated and compared by previous studies to interpret observed variations in the geomagnetic field. However, the piezomagnetic field estimated in previous studies may not provide an accurate estimation because they ignored spatial variations in elasticity, leading to only a rough approximation of the properties of Earth's crust. In this paper, a semi-analytical procedure for calculating the piezomagnetic field arising from a point dislocation source embedded in a layered elastic medium is derived. Following a well-established method of the vector surface harmonic expansion, all of the governing equations written in partial differential equations in a real domain, together with the linear constitutive law of the piezomagnetic effect, are converted to a set of ordinary differential equations in a wavenumber domain. Equations in the wavenumber domain are solved analytically, and each component of the piezomagnetic field in the real domain is obtained after applying the Hankel transform. By using the derived procedure, the piezomagnetic and displacement fields due to a finite fault with strike-slip, dip-slip, and tensile-opening mechanisms are estimated for media with layered elasticity structures. Results for a finite fault are obtained by integrating the point source solution over the fault plane. The results of the numerical analysis allow the effect of heterogeneities in rigidity on the piezomagnetic effect to be examined and implications for the findings of previous investigations to be drawn. In cases where the moment-release at the dislocation source is fixed, the effect of the rigidity differences between upper and lower layers on the piezomagnetic field is minor even in the case where the Curie point depth is near the source of dislocation. This result is in contrast to a previous study that assumed the Mogi model and suggested that heterogeneities in the horizontal direction may be of importance when combined with layered rigidity structures. A contrast is seen between the piezomagnetic and displacement fields corresponding to models with layered rigidity structures: the piezomagnetic field is roughly proportional to the moment-release on a source fault, whereas the displacement field is proportional to slip or opening of the fault. Provided that the rigidity of the crust increases with increasing depth, the calculated piezomagnetic field is likely to have been underestimated in many earlier studies, which assumed uniform rigidity and a geodetically inverted size of slip.


2021 ◽  
Vol 18 (2) ◽  
pp. 231-240
Author(s):  
Yi Yao ◽  
Yibo Wang

Abstract Anisotropy affects the focal mechanism and makes it complicated. A shear motion generates a pure double-couple (DC) source in isotropic media. While in anisotropic media, it will produce non-DC components, which contain isotropic (ISO) and compensated linear vector dipole (CLVD) components. Besides, coupled with the diversity of fault motion, the source may become extremely complicated. In this paper, the seismic moment tensor is obtained based on the dislocation model, and then a variety of analyses are performed with the moment tensor, including moment tensor decomposition, radiation pattern, radiated energy ratio and seismic propagation characteristics. Since the anisotropy of the medium also influences seismic wave propagation, a hypothesis is made that the source region is minimal and anisotropic, but the propagation path is isotropic. The research gives some interesting conclusions. It is found that the anisotropy mainly affects the focal mechanism under low slope angle while high slope angle has little effect on the polarity. In terms of the moment tensor decomposition, if only one of ISO or CLVD exists, it can be asserted that the source region is anisotropic because ISO components are accompanied by CLVD components in isotropy media. As for the DC component, the results indicate it is one of the most important factors for determining the ratio of radiant energy. This paper presents some valuable findings of the focal mechanism of the general dislocation source under anisotropy, which helps to recognise the source characteristics of the earthquake and build solid foundations for the subsequent inversion of the focal mechanism.


Sign in / Sign up

Export Citation Format

Share Document