scholarly journals Design of a 12-MW HTS Wind Power Generator Including a Flux Pump Exciter

2021 ◽  
Author(s):  
HJ Sung ◽  
Rodney Badcock ◽  
BS Go ◽  
M Park ◽  
IK Yu ◽  
...  

© 2016 IEEE. A flux pump (FP) exciter injects dc current into the higherature superconducting (HTS) field coils of an HTS rotating machine without a slip ring and current leads. When designing a large-scale HTS generator with integrated FP exciter, the coil inductance, field current, and time constant need to be optimized for better performance of the machine. In this paper, a 12-MW HTS wind power generator with integrated FP exciter was designed. The essential parameters of a 12-MW HTS generator were optimized using the Taguchi method, targeting the minimization of weight and volume of the generator, the length of HTS wire, and the inductance. In particular, the FP exciter was adopted for supplying dc current to the HTS field coils without the power supply and the slip ring. The magnetic field distribution was analyzed using the 3-D finite-element method. The induced dc current and charging and discharging times of the FP exciter were compared with the metal current leads, for confirmation of the effectiveness of the FP exciter. The detailed results of the HTS generator design were discussed in detail.

2021 ◽  
Author(s):  
HJ Sung ◽  
Rodney Badcock ◽  
BS Go ◽  
M Park ◽  
IK Yu ◽  
...  

© 2016 IEEE. A flux pump (FP) exciter injects dc current into the higherature superconducting (HTS) field coils of an HTS rotating machine without a slip ring and current leads. When designing a large-scale HTS generator with integrated FP exciter, the coil inductance, field current, and time constant need to be optimized for better performance of the machine. In this paper, a 12-MW HTS wind power generator with integrated FP exciter was designed. The essential parameters of a 12-MW HTS generator were optimized using the Taguchi method, targeting the minimization of weight and volume of the generator, the length of HTS wire, and the inductance. In particular, the FP exciter was adopted for supplying dc current to the HTS field coils without the power supply and the slip ring. The magnetic field distribution was analyzed using the 3-D finite-element method. The induced dc current and charging and discharging times of the FP exciter were compared with the metal current leads, for confirmation of the effectiveness of the FP exciter. The detailed results of the HTS generator design were discussed in detail.


2021 ◽  
Author(s):  
HJ Sung ◽  
Rodney Badcock ◽  
Zhenan Jiang ◽  
J Choi ◽  
M Park ◽  
...  

Brushless high-temperature superconducting (HTS) flux pump exciters, which enable large currents to be injected into a superconducting circuit without requiring a power supply, slip ring, and current leads, are promising candidates for HTS rotating machine application. This paper outlines the design and heat load analysis of a 12-MW HTS wind power generator module employing a brushless HTS exciter. The 12-MW HTS generator module and the HTS exciter were simulated using the 3-D finite element method. The module design of the generator was focused on reducing the heat load and inductance per rotor pole for application of an HTS exciter. A highly permeable ferromagnetic material was used to increase the magnetic flux density incident on the HTS stator wire of the exciter, even with a large radial gap between the rotor and the stator, and hence increase the injected current. Based on the electromagnetic simulations, the design of the module was confirmed, and the iron loss of the exciter was calculated. Then, the conduction and radiation heat loads were simulated. The induced dc current value and ramping time of the DC current at the HTS stator wire of the exciter were calculated. The detailed results of the module with the HTS exciter were discussed, and the results obtained in this paper are useful in designing large-scale HTS generators. © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2021 ◽  
Author(s):  
HJ Sung ◽  
Rodney Badcock ◽  
Zhenan Jiang ◽  
J Choi ◽  
M Park ◽  
...  

Brushless high-temperature superconducting (HTS) flux pump exciters, which enable large currents to be injected into a superconducting circuit without requiring a power supply, slip ring, and current leads, are promising candidates for HTS rotating machine application. This paper outlines the design and heat load analysis of a 12-MW HTS wind power generator module employing a brushless HTS exciter. The 12-MW HTS generator module and the HTS exciter were simulated using the 3-D finite element method. The module design of the generator was focused on reducing the heat load and inductance per rotor pole for application of an HTS exciter. A highly permeable ferromagnetic material was used to increase the magnetic flux density incident on the HTS stator wire of the exciter, even with a large radial gap between the rotor and the stator, and hence increase the injected current. Based on the electromagnetic simulations, the design of the module was confirmed, and the iron loss of the exciter was calculated. Then, the conduction and radiation heat loads were simulated. The induced dc current value and ramping time of the DC current at the HTS stator wire of the exciter were calculated. The detailed results of the module with the HTS exciter were discussed, and the results obtained in this paper are useful in designing large-scale HTS generators. © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2016 ◽  
Vol 13 (3) ◽  
pp. 347-360 ◽  
Author(s):  
Amin Safari ◽  
Davoud Sheibai

This paper presents an efficient Artificial Bee Colony (ABC) algorithm for solving large scale economic load dispatch (ELD) problems in power networks. To realize the ELD, the valve-point loading effect, system load demand, power losses, ramp rate limits and prohibited operation zones are considered here. Simulations were performed on four different power systems with 3, 6, 15 and 40 generating units and the results are compared with two forms of power systems, one power system is with a wind power generator and other power system is without a wind power generator. The results of this study reveal that the proposed approach is able to find appreciable ELD solutions than those of previous algorithms.


2016 ◽  
Vol 26 (3) ◽  
pp. 1-5 ◽  
Author(s):  
H. J. Sung ◽  
R. A. Badcock ◽  
B. S. Go ◽  
M. Park ◽  
I. K. Yu ◽  
...  

2016 ◽  
Vol 530 ◽  
pp. 133-137 ◽  
Author(s):  
Hae-Jin Sung ◽  
Byeong-Soo Go ◽  
Zhenan Jiang ◽  
Minwon Park ◽  
In-Keun Yu

Sign in / Sign up

Export Citation Format

Share Document