dc current
Recently Published Documents


TOTAL DOCUMENTS

1116
(FIVE YEARS 242)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Vol 8 ◽  
pp. 752-761
Author(s):  
Puyu Wang ◽  
Pengcheng Liu ◽  
Ningqiang Jiang ◽  
Xiao-Ping Zhang ◽  
Shihua Feng ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ravi Kumar ◽  
Saurabh Kumar Srivastav ◽  
Christian Spånslätt ◽  
K. Watanabe ◽  
T. Taniguchi ◽  
...  

AbstractThe presence of “upstream” modes, moving against the direction of charge current flow in the fractional quantum Hall (FQH) phases, is critical for the emergence of renormalized modes with exotic quantum statistics. Detection of excess noise at the edge is a smoking gun for the presence of upstream modes. Here, we report noise measurements at the edges of FQH states realized in dual graphite-gated bilayer graphene devices. A noiseless dc current is injected at one of the edge contacts, and the noise generated at contacts at length, L = 4 μm and 10 μm away along the upstream direction is studied. For integer and particle-like FQH states, no detectable noise is measured. By contrast, for “hole-conjugate” FQH states, we detect a strong noise proportional to the injected current, unambiguously proving the existence of upstream modes. The noise magnitude remains independent of length, which matches our theoretical analysis demonstrating the ballistic nature of upstream energy transport, quite distinct from the diffusive propagation reported earlier in GaAs-based systems.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 175
Author(s):  
Jinlei Chen ◽  
Sheng Wang ◽  
Carlos E. Ugalde-Loo ◽  
Wenlong Ming ◽  
Oluwole D. Adeuyi ◽  
...  

Although the control of modular multi-level converters (MMCs) in high-voltage direct-current (HVDC) networks has become a mature subject these days, the potential for adverse interactions between different converter controls remains an under-researched challenge attracting the attention from both academia and industry. Even for point-to-point HVDC links (i.e., simple HVDC systems), converter control interactions may result in the shifting of system operating voltages, increased power losses, and unintended power imbalances at converter stations. To bridge this research gap, the risk of multiple cross-over of control characteristics of MMCs is assessed in this paper through mathematical analysis, computational simulation, and experimental validation. Specifically, the following point-to-point HVDC link configurations are examined: (1) one MMC station equipped with a current versus voltage droop control and the other station equipped with a constant power control; and (2) one MMC station equipped with a power versus voltage droop control and the other station equipped with a constant current control. Design guidelines for droop coefficients are provided to prevent adverse control interactions. A 60-kW MMC test-rig is used to experimentally verify the impact of multiple crossing of control characteristics of the DC system configurations, with results verified through software simulation in MATLAB/Simulink using an open access toolbox. Results show that in operating conditions of 650 V and 50 A (DC voltage and DC current), drifts of 7.7% in the DC voltage and of 10% in the DC current occur due to adverse control interactions under the current versus voltage droop and power control scheme. Similarly, drifts of 7.7% both in the DC voltage and power occur under the power versus voltage droop and current control scheme.


Author(s):  
Yueming Sun ◽  
Jin Fang ◽  
Gennady Sidorov ◽  
Rodney Alan Badcock ◽  
Nicholas J Long ◽  
...  

Abstract In many high-temperature superconducting (HTS) applications, HTS coated conductors carry a DC current under an external AC magnetic field. In such operating conditions, dynamic resistance will occur when the traversing magnetic flux across the HTS conductors. Consequently, AC loss within the superconductors is composed of the dynamic loss component arising from dynamic resistance and the magnetization loss component due to the AC external magnetic field. In this work, the dynamic resistance and the total loss in a three-tape HTS coated conductor stack were measured at 77 K under perpendicular AC magnetic fields up to 80 mT and DC currents (Idc) up to the critical current (Ic). The stack was assembled from three serial-connected 4 mm wide Superpower wires. The measured dynamic resistance results for the stack were well supported by the results from 2D H-formulation finite element modelling (FEM) and broadly agree with the analytical values for stacks. The FEM analysis shows asymmetric transport DC current profiles in the central region of the superconductor. We attribute the result to the superposition of DC currents and the induced subcritical currents which explains why the measured magnetization loss values increase with DC current levels at low magnetic field. The onset of dynamic loss for the stack for low i (Idc/ Ic) values is much slower when compared to that of the single tape and hence the contribution of the dynamic loss component to the total loss in the stack is much smaller than that of the single tape. Dynamic loss in the stack becomes comparable to the magnetization loss at i = 0.5 and becomes greater than the magnetization loss at i = 0.7. Both magnetization loss and dynamic loss in the stack are smaller than those of the single tape due to shielding effects.


Author(s):  
Ali A. Yousif ◽  
Ahmed M. Mohammed ◽  
Mohammed Moanes E. Ali

A bearingless brushless direct current (BLDC) motor incorporates the function of magnetic bearings into a BLDC motor, making it a new type of high-performance motor. In this paper, the main motor windings are used to generate the radial force cancellation by injecting the required dc current, “integrated winding configuration”. The bearingless BLDC motor, direct current (DC) cancellation system model is established with the aid of (ANSYS/MAXWELL) software. The simulation results confirm that the rotor radial force is approximately zero and results from a balanced distribution of the magnetic flux density. The proposed DC excitation system is suitable to realize the rotor radial force cancellation in the bearingless BLDC motor. The simulation results of the proposed configuration show the approach of integrating winding configuration at different active pole positions to find the more efficient suspension performance and reduce the suspensions system current.


2022 ◽  
Vol 961 (1) ◽  
pp. 012060
Author(s):  
Ruqayah A. Abbas ◽  
Sami A. Ajeel ◽  
Maryam A. Ali Bash ◽  
Mohammed J. Kadhim

Abstract In this study, nano sized yttria stabilized zirconia (YSZ) suspension in organic solution was deposited by electrophoretic deposition (EPD) method as a protective layer on substrate that was previously plasma sprayed thermal barrier coating (TBCs). In order to improve the performance of TBC from degradation by melt ingression of fuel impurities. Design of experiments (DOE) by Taguchi method was used to optimize the controlled variables of EPD process. A crack free YSZ overlay coating was carried out at different variables; applied voltage (20, 40, 60) V, deposition time (3, 5, 7) min and suspension concentration (5, 10, 15) g/l using DC current. Morphological appearance and cross section of the investigated coating specimen were done using optical and field emission scanning electron microscope. Optimizing process and analysis of variances (ANOVA) were performed by “Minitab 18” software. The results indicate that best condition of coating thickness can be obtained at 40V, 5min and 10g/l when applying signal-to-noise ratio “Larger is better”.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 243
Author(s):  
Luis Galván ◽  
Pablo Jesús Gómez ◽  
Eduardo Galván ◽  
Juan Manuel Carrasco

From its introduction to the present day, Cascaded H-Bridge multilevel converters were employed on numerous applications. However, their floating capacitor, while advantageous for some applications (such as photovoltaic) requires the usage of balancing methods by design. Over the years, several such methods were proposed and polished. Some of these methods use optimization techniques or inject a zero-sequence voltage to take advantage of the converter redundancies. This paper describes an optimization-based capacitor balancing method with additional features. It can drive each module DC-Link to a different voltage for independent maximum power point tracking in photovoltaic applications. Moreover, the user can specify the independent active power set points to modules connected to batteries or any other energy storage systems. Finally, DC current ripple can be reduced on some modules, which can extend the lifespan of any connected ultra-capacitors. The method as a whole is tested on real hardware and compared with the state-of-the-art. In its simplest configuration, the presented method shows greater speed, robustness, and current wave quality than the state-of-the-art alternative in spite of producing about 1/3 fewer commutations. Its other characteristics provide additional functionalities and improve the adaptability of the converter to other applications.


Sign in / Sign up

Export Citation Format

Share Document