Heat loss analysis-based design of a 12MW wind power generator module having an HTS flux pump exciter

2016 ◽  
Vol 530 ◽  
pp. 133-137 ◽  
Author(s):  
Hae-Jin Sung ◽  
Byeong-Soo Go ◽  
Zhenan Jiang ◽  
Minwon Park ◽  
In-Keun Yu
2021 ◽  
Author(s):  
HJ Sung ◽  
Rodney Badcock ◽  
BS Go ◽  
M Park ◽  
IK Yu ◽  
...  

© 2016 IEEE. A flux pump (FP) exciter injects dc current into the higherature superconducting (HTS) field coils of an HTS rotating machine without a slip ring and current leads. When designing a large-scale HTS generator with integrated FP exciter, the coil inductance, field current, and time constant need to be optimized for better performance of the machine. In this paper, a 12-MW HTS wind power generator with integrated FP exciter was designed. The essential parameters of a 12-MW HTS generator were optimized using the Taguchi method, targeting the minimization of weight and volume of the generator, the length of HTS wire, and the inductance. In particular, the FP exciter was adopted for supplying dc current to the HTS field coils without the power supply and the slip ring. The magnetic field distribution was analyzed using the 3-D finite-element method. The induced dc current and charging and discharging times of the FP exciter were compared with the metal current leads, for confirmation of the effectiveness of the FP exciter. The detailed results of the HTS generator design were discussed in detail.


2016 ◽  
Vol 26 (3) ◽  
pp. 1-5 ◽  
Author(s):  
H. J. Sung ◽  
R. A. Badcock ◽  
B. S. Go ◽  
M. Park ◽  
I. K. Yu ◽  
...  

2021 ◽  
Author(s):  
HJ Sung ◽  
Rodney Badcock ◽  
BS Go ◽  
M Park ◽  
IK Yu ◽  
...  

© 2016 IEEE. A flux pump (FP) exciter injects dc current into the higherature superconducting (HTS) field coils of an HTS rotating machine without a slip ring and current leads. When designing a large-scale HTS generator with integrated FP exciter, the coil inductance, field current, and time constant need to be optimized for better performance of the machine. In this paper, a 12-MW HTS wind power generator with integrated FP exciter was designed. The essential parameters of a 12-MW HTS generator were optimized using the Taguchi method, targeting the minimization of weight and volume of the generator, the length of HTS wire, and the inductance. In particular, the FP exciter was adopted for supplying dc current to the HTS field coils without the power supply and the slip ring. The magnetic field distribution was analyzed using the 3-D finite-element method. The induced dc current and charging and discharging times of the FP exciter were compared with the metal current leads, for confirmation of the effectiveness of the FP exciter. The detailed results of the HTS generator design were discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document