scholarly journals Linked Tree-Decompositions of Infinite Represented Matroids

2021 ◽  
Author(s):  
◽  
Jeffrey Donald Azzato

<p>It is natural to try to extend the results of Robertson and Seymour's Graph Minors Project to other objects. As linked tree-decompositions (LTDs) of graphs played a key role in the Graph Minors Project, establishing the existence of ltds of other objects is a useful step towards such extensions. There has been progress in this direction for both infinite graphs and matroids.  Kris and Thomas proved that infinite graphs of finite tree-width have LTDs. More recently, Geelen, Gerards and Whittle proved that matroids have linked branch-decompositions, which are similar to LTDs. These results suggest that infinite matroids of finite treewidth should have LTDs. We answer this conjecture affirmatively for the representable case. Specifically, an independence space is an infinite matroid, and a point configuration (hereafter configuration) is a represented independence space. It is shown that every configuration having tree-width has an LTD k E w (kappa element of omega) of width at most 2k. Configuration analogues for bridges of X (also called connected components modulo X) and chordality in graphs are introduced to prove this result. A correspondence is established between chordal configurations only containing subspaces of dimension at most k E w (kappa element of omega) and configuration tree-decompositions having width at most k. This correspondence is used to characterise finite-width LTDs of configurations by their local structure, enabling the proof of the existence result. The theory developed is also used to show compactness of configuration tree-width: a configuration has tree-width at most k E w (kappa element of omega) if and only if each of its finite subconfigurations has tree-width at most k E w (kappa element of omega). The existence of LTDs for configurations having finite tree-width opens the possibility of well-quasi-ordering (or even better-quasi-ordering) by minors those independence spaces representable over a fixed finite field and having bounded tree-width.</p>

2021 ◽  
Author(s):  
◽  
Jeffrey Donald Azzato

<p>It is natural to try to extend the results of Robertson and Seymour's Graph Minors Project to other objects. As linked tree-decompositions (LTDs) of graphs played a key role in the Graph Minors Project, establishing the existence of ltds of other objects is a useful step towards such extensions. There has been progress in this direction for both infinite graphs and matroids.  Kris and Thomas proved that infinite graphs of finite tree-width have LTDs. More recently, Geelen, Gerards and Whittle proved that matroids have linked branch-decompositions, which are similar to LTDs. These results suggest that infinite matroids of finite treewidth should have LTDs. We answer this conjecture affirmatively for the representable case. Specifically, an independence space is an infinite matroid, and a point configuration (hereafter configuration) is a represented independence space. It is shown that every configuration having tree-width has an LTD k E w (kappa element of omega) of width at most 2k. Configuration analogues for bridges of X (also called connected components modulo X) and chordality in graphs are introduced to prove this result. A correspondence is established between chordal configurations only containing subspaces of dimension at most k E w (kappa element of omega) and configuration tree-decompositions having width at most k. This correspondence is used to characterise finite-width LTDs of configurations by their local structure, enabling the proof of the existence result. The theory developed is also used to show compactness of configuration tree-width: a configuration has tree-width at most k E w (kappa element of omega) if and only if each of its finite subconfigurations has tree-width at most k E w (kappa element of omega). The existence of LTDs for configurations having finite tree-width opens the possibility of well-quasi-ordering (or even better-quasi-ordering) by minors those independence spaces representable over a fixed finite field and having bounded tree-width.</p>


1988 ◽  
Vol 103 (3) ◽  
pp. 409-426 ◽  
Author(s):  
Reinhard Diestel

The purpose of this paper is to give natural characterizations of the countable graphs that admit tree-decompositions or simplicial tree-decompositions into primes. Tree-decompositions were recently introduced by Robertson and Seymour in their series of papers on graph minors [7]. Simplicial tree-decompositions were first considered by Halin[6], being the most typical kind of ‘simplicial decomposition’ as introduced by Halin[5] in 1964. The problem of determining which infinite graphs admit a simplicial decomposition into primes has stood unresolved since then; a first solution for simplicial tree-decompositions was given in [2].


1990 ◽  
Vol 48 (2) ◽  
pp. 227-254 ◽  
Author(s):  
Neil Robertson ◽  
P.D Seymour

2002 ◽  
Vol 11 (6) ◽  
pp. 541-547 ◽  
Author(s):  
PATRICK BELLENBAUM ◽  
REINHARD DIESTEL

We give short proofs of the following two results: Thomas's theorem that every finite graph has a linked tree-decomposition of width no greater than its tree-width; and the ‘tree-width duality theorem’ of Seymour and Thomas, that the tree-width of a finite graph is exactly one less than the largest order of its brambles.


1986 ◽  
Vol 7 (3) ◽  
pp. 309-322 ◽  
Author(s):  
Neil Robertson ◽  
P.D Seymour
Keyword(s):  

2012 ◽  
Vol 23 (03) ◽  
pp. 627-647
Author(s):  
GIOVANNA D'AGOSTINO ◽  
GIACOMO LENZI

This paper is a continuation and correction of a paper presented by the same authors at the conference GANDALF 2010. We consider the Modal μ-calculus and some fragments of it. For every positive integer k we consider the class SCCk of all finite graphs whose strongly connected components have size at most k, and the class TWk of all finite graphs of tree width at most k. As upper bounds, we show that for every k, the temporal logic CTL* collapses to alternation free μ-calculus in SCCk; and in TW1, the winning condition for parity games of any index n belongs to the level Δ2 of Modal μ-calculus. As lower bounds, we show that Büchi automata are not closed under complement in TW2 and coBüchi nondeterministic and alternating automata differ in TW1.


1984 ◽  
Vol 36 (1) ◽  
pp. 49-64 ◽  
Author(s):  
Neil Robertson ◽  
P.D Seymour
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document