scholarly journals Graph Minors. XVIII. Tree-decompositions and well-quasi-ordering

2003 ◽  
Vol 89 (1) ◽  
pp. 77-108 ◽  
Author(s):  
Neil Robertson ◽  
Paul Seymour
2021 ◽  
Author(s):  
◽  
Jeffrey Donald Azzato

<p>It is natural to try to extend the results of Robertson and Seymour's Graph Minors Project to other objects. As linked tree-decompositions (LTDs) of graphs played a key role in the Graph Minors Project, establishing the existence of ltds of other objects is a useful step towards such extensions. There has been progress in this direction for both infinite graphs and matroids.  Kris and Thomas proved that infinite graphs of finite tree-width have LTDs. More recently, Geelen, Gerards and Whittle proved that matroids have linked branch-decompositions, which are similar to LTDs. These results suggest that infinite matroids of finite treewidth should have LTDs. We answer this conjecture affirmatively for the representable case. Specifically, an independence space is an infinite matroid, and a point configuration (hereafter configuration) is a represented independence space. It is shown that every configuration having tree-width has an LTD k E w (kappa element of omega) of width at most 2k. Configuration analogues for bridges of X (also called connected components modulo X) and chordality in graphs are introduced to prove this result. A correspondence is established between chordal configurations only containing subspaces of dimension at most k E w (kappa element of omega) and configuration tree-decompositions having width at most k. This correspondence is used to characterise finite-width LTDs of configurations by their local structure, enabling the proof of the existence result. The theory developed is also used to show compactness of configuration tree-width: a configuration has tree-width at most k E w (kappa element of omega) if and only if each of its finite subconfigurations has tree-width at most k E w (kappa element of omega). The existence of LTDs for configurations having finite tree-width opens the possibility of well-quasi-ordering (or even better-quasi-ordering) by minors those independence spaces representable over a fixed finite field and having bounded tree-width.</p>


2021 ◽  
Author(s):  
◽  
Jeffrey Donald Azzato

<p>It is natural to try to extend the results of Robertson and Seymour's Graph Minors Project to other objects. As linked tree-decompositions (LTDs) of graphs played a key role in the Graph Minors Project, establishing the existence of ltds of other objects is a useful step towards such extensions. There has been progress in this direction for both infinite graphs and matroids.  Kris and Thomas proved that infinite graphs of finite tree-width have LTDs. More recently, Geelen, Gerards and Whittle proved that matroids have linked branch-decompositions, which are similar to LTDs. These results suggest that infinite matroids of finite treewidth should have LTDs. We answer this conjecture affirmatively for the representable case. Specifically, an independence space is an infinite matroid, and a point configuration (hereafter configuration) is a represented independence space. It is shown that every configuration having tree-width has an LTD k E w (kappa element of omega) of width at most 2k. Configuration analogues for bridges of X (also called connected components modulo X) and chordality in graphs are introduced to prove this result. A correspondence is established between chordal configurations only containing subspaces of dimension at most k E w (kappa element of omega) and configuration tree-decompositions having width at most k. This correspondence is used to characterise finite-width LTDs of configurations by their local structure, enabling the proof of the existence result. The theory developed is also used to show compactness of configuration tree-width: a configuration has tree-width at most k E w (kappa element of omega) if and only if each of its finite subconfigurations has tree-width at most k E w (kappa element of omega). The existence of LTDs for configurations having finite tree-width opens the possibility of well-quasi-ordering (or even better-quasi-ordering) by minors those independence spaces representable over a fixed finite field and having bounded tree-width.</p>


1988 ◽  
Vol 103 (3) ◽  
pp. 409-426 ◽  
Author(s):  
Reinhard Diestel

The purpose of this paper is to give natural characterizations of the countable graphs that admit tree-decompositions or simplicial tree-decompositions into primes. Tree-decompositions were recently introduced by Robertson and Seymour in their series of papers on graph minors [7]. Simplicial tree-decompositions were first considered by Halin[6], being the most typical kind of ‘simplicial decomposition’ as introduced by Halin[5] in 1964. The problem of determining which infinite graphs admit a simplicial decomposition into primes has stood unresolved since then; a first solution for simplicial tree-decompositions was given in [2].


1990 ◽  
Vol 48 (2) ◽  
pp. 227-254 ◽  
Author(s):  
Neil Robertson ◽  
P.D Seymour

2004 ◽  
Vol 90 (2) ◽  
pp. 325-385 ◽  
Author(s):  
Neil Robertson ◽  
P.D. Seymour
Keyword(s):  

2013 ◽  
Vol 90 (6) ◽  
pp. 1278-1291 ◽  
Author(s):  
Alberto Policriti ◽  
Alexandru I. Tomescu
Keyword(s):  

2000 ◽  
Vol 11 (03) ◽  
pp. 365-371 ◽  
Author(s):  
LJUBOMIR PERKOVIĆ ◽  
BRUCE REED

We present a modification of Bodlaender's linear time algorithm that, for constant k, determine whether an input graph G has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation of this paper.


2005 ◽  
Vol 145 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Hans L. Bodlaender ◽  
Fedor V. Fomin
Keyword(s):  

2002 ◽  
Vol 11 (6) ◽  
pp. 541-547 ◽  
Author(s):  
PATRICK BELLENBAUM ◽  
REINHARD DIESTEL

We give short proofs of the following two results: Thomas's theorem that every finite graph has a linked tree-decomposition of width no greater than its tree-width; and the ‘tree-width duality theorem’ of Seymour and Thomas, that the tree-width of a finite graph is exactly one less than the largest order of its brambles.


1989 ◽  
Vol 10 (3) ◽  
pp. 227-230 ◽  
Author(s):  
Ulrich Bollerhoff

Sign in / Sign up

Export Citation Format

Share Document