scholarly journals A principal ideal theorem in the genus field

1971 ◽  
Vol 23 (4) ◽  
pp. 697-718 ◽  
Author(s):  
Fumiyuki Terada
Keyword(s):  
Author(s):  
Jitsupat Rattanakangwanwong ◽  
Yotsanan Meemark
Keyword(s):  

1970 ◽  
Vol 11 (4) ◽  
pp. 490-498
Author(s):  
P. M. Cohn

Free ideal rings (or firs, cf. [2, 3] and § 2 below) form a noncommutative analogue of principal ideal domains, to which they reduce in the commutative case, and in [3] a category TR of right R-modules was defined, over any fir R, which forms an analogue of finitely generated torsion modules. The category TR was shown to be abelian, and all its objects have finite composition length; more over, the corresponding category RT of left R-modules is dual to TR.


2011 ◽  
Vol 10 (04) ◽  
pp. 605-613
Author(s):  
ALEXEY V. GAVRILOV

Let 𝕜 be a field of characteristic p > 0 and R be a subalgebra of 𝕜[X] = 𝕜[x1, …, xn]. Let J(R) be the ideal in 𝕜[X] defined by [Formula: see text]. It is shown that if it is a principal ideal then [Formula: see text], where q = pn(p - 1)/2.


1984 ◽  
Vol 25 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Andy J. Gray

This note is devoted to giving a conceptually simple proof of the Invertible Ideal Theorem [1, Theorem 4·6], namely that a prime ideal of a right Noetherian ring R minimal over an invertible ideal has rank at most one. In the commutative case this result may be easily deduced from the Principal Ideal Theorem by localizing and observing that an invertible ideal of a local ring is principal. Our proof is partially analogous in that it utilizes the Rees ring (denned below) in order to reduce the theorem to the case of a prime ideal minimal over an ideal generated by a single central element, which can be easily dealt with by adapting the commutative argument in [8]. The reader is also referred to the papers of Jategaonkar on the subject [5, 6, 7], particularly the last where another proof of the theorem appears which yields some additional information.


2013 ◽  
Vol 29 (2) ◽  
pp. 267-273
Author(s):  
MIHAIL URSUL ◽  
◽  
MARTIN JURAS ◽  

We prove that every infinite nilpotent ring R admits a ring topology T for which (R, T ) has an open totally bounded countable subring with trivial multiplication. A new example of a compact ring R for which R2 is not closed, is given. We prove that every compact Bezout domain is a principal ideal domain.


2019 ◽  
Vol 18 (02) ◽  
pp. 1950023 ◽  
Author(s):  
Hai Q. Dinh ◽  
Bac T. Nguyen ◽  
Songsak Sriboonchitta ◽  
Thang M. Vo

For any odd prime [Formula: see text] such that [Formula: see text], the structures of all [Formula: see text]-constacyclic codes of length [Formula: see text] over the finite commutative chain ring [Formula: see text] [Formula: see text] are established in term of their generator polynomials. When the unit [Formula: see text] is a square, each [Formula: see text]-constacyclic code of length [Formula: see text] is expressed as a direct sum of two constacyclic codes of length [Formula: see text]. In the main case that the unit [Formula: see text] is not a square, it is shown that the ambient ring [Formula: see text] is a principal ideal ring. From that, the structure, number of codewords, duals of all such [Formula: see text]-constacyclic codes are obtained. As an application, we identify all self-orthogonal, dual-containing, and the unique self-dual [Formula: see text]-constacyclic codes of length [Formula: see text] over [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document