scholarly journals Principal ideal theorems in the genus field for absolutely abelian extensions

1977 ◽  
Vol 9 (1) ◽  
pp. 4-15 ◽  
Author(s):  
Hisako Furuya
2021 ◽  
pp. 2150062
Author(s):  
Carlos Daniel Reyes-Morales ◽  
Gabriel Villa-Salvador

We give a construction of the genus field for Kummer [Formula: see text]-cyclic extensions of rational congruence function fields, where [Formula: see text] is a prime number. First, we compute the genus field of a field contained in a cyclotomic function field, and then for the general case. This generalizes the result obtained by Peng for a Kummer [Formula: see text]-cyclic extension. Finally, we study the extension [Formula: see text], for [Formula: see text], [Formula: see text] abelian extensions of [Formula: see text].


1971 ◽  
Vol 23 (4) ◽  
pp. 697-718 ◽  
Author(s):  
Fumiyuki Terada
Keyword(s):  

2020 ◽  
Vol 224 (3) ◽  
pp. 987-1008
Author(s):  
José Manuel Casas ◽  
Xabier García-Martínez

Author(s):  
Jitsupat Rattanakangwanwong ◽  
Yotsanan Meemark
Keyword(s):  

Author(s):  
Jiuya Wang

AbstractElementary abelian groups are finite groups in the form of {A=(\mathbb{Z}/p\mathbb{Z})^{r}} for a prime number p. For every integer {\ell>1} and {r>1}, we prove a non-trivial upper bound on the {\ell}-torsion in class groups of every A-extension. Our results are pointwise and unconditional. This establishes the first case where for some Galois group G, the {\ell}-torsion in class groups are bounded non-trivially for every G-extension and every integer {\ell>1}. When r is large enough, the unconditional pointwise bound we obtain also breaks the previously best known bound shown by Ellenberg and Venkatesh under GRH.


1970 ◽  
Vol 11 (4) ◽  
pp. 490-498
Author(s):  
P. M. Cohn

Free ideal rings (or firs, cf. [2, 3] and § 2 below) form a noncommutative analogue of principal ideal domains, to which they reduce in the commutative case, and in [3] a category TR of right R-modules was defined, over any fir R, which forms an analogue of finitely generated torsion modules. The category TR was shown to be abelian, and all its objects have finite composition length; more over, the corresponding category RT of left R-modules is dual to TR.


2011 ◽  
Vol 10 (04) ◽  
pp. 605-613
Author(s):  
ALEXEY V. GAVRILOV

Let 𝕜 be a field of characteristic p > 0 and R be a subalgebra of 𝕜[X] = 𝕜[x1, …, xn]. Let J(R) be the ideal in 𝕜[X] defined by [Formula: see text]. It is shown that if it is a principal ideal then [Formula: see text], where q = pn(p - 1)/2.


1984 ◽  
Vol 25 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Andy J. Gray

This note is devoted to giving a conceptually simple proof of the Invertible Ideal Theorem [1, Theorem 4·6], namely that a prime ideal of a right Noetherian ring R minimal over an invertible ideal has rank at most one. In the commutative case this result may be easily deduced from the Principal Ideal Theorem by localizing and observing that an invertible ideal of a local ring is principal. Our proof is partially analogous in that it utilizes the Rees ring (denned below) in order to reduce the theorem to the case of a prime ideal minimal over an ideal generated by a single central element, which can be easily dealt with by adapting the commutative argument in [8]. The reader is also referred to the papers of Jategaonkar on the subject [5, 6, 7], particularly the last where another proof of the theorem appears which yields some additional information.


Sign in / Sign up

Export Citation Format

Share Document