scholarly journals Torsion and protorsion modules over free ideal rings

1970 ◽  
Vol 11 (4) ◽  
pp. 490-498
Author(s):  
P. M. Cohn

Free ideal rings (or firs, cf. [2, 3] and § 2 below) form a noncommutative analogue of principal ideal domains, to which they reduce in the commutative case, and in [3] a category TR of right R-modules was defined, over any fir R, which forms an analogue of finitely generated torsion modules. The category TR was shown to be abelian, and all its objects have finite composition length; more over, the corresponding category RT of left R-modules is dual to TR.

2013 ◽  
Vol 16 (2) ◽  
Author(s):  
Wesley Calvert ◽  
Kunal Dutta ◽  
Amritanshu Prasad

Abstract.A tuple (or subgroup) in a group is said to degenerate to another if the latter is an endomorphic image of the former. In a countable reduced abelian group, it is shown that if tuples (or finite subgroups) degenerate to each other, then they lie in the same automorphism orbit. The proof is based on techniques that were developed by Kaplansky and Mackey in order to give an elegant proof of Ulm's theorem. Similar results hold for reduced countably-generated torsion modules over principal ideal domains. It is shown that the depth and the description of atoms of the resulting poset of orbits of tuples depend only on the Ulm invariants of the module in question (and not on the underlying ring). A complete description of the poset of orbits of elements in terms of the Ulm invariants of the module is given. The relationship between this description of orbits and a very different-looking one obtained by Dutta and Prasad for torsion modules of bounded order is explained.


1986 ◽  
Vol 29 (1) ◽  
pp. 25-32 ◽  
Author(s):  
David E. Dobbs

AbstractLet R be an integral domain. It is proved that if a nonzero ideal I of R can be generated by n < ∞ elements, then I is invertible (i.e., flat) if and only if I(∩ Rai) = ∩ Iai for all { a1, . . ., a n﹜ ⊂ I. The article's main focus is on torsion-free R-modules E which are LCM-stable in the sense that E(Ra ∩ Rb) = Ea ∩ Eb for all a, b ∈ R. By means of linear relations, LCM-stableness is shown to be equivalent to a weak aspect of flatness. Consequently, if each finitely generated ideal of R may be 2-generated, then each LCM-stable R-module is flat. Finally, LCM-stableness of maximal ideals serves to characterize Prüfer domains, Dedekind domains, principal ideal domains, and Bézout domains amongst suitably larger classes of integral domains.


1998 ◽  
Vol 40 (3) ◽  
pp. 343-351 ◽  
Author(s):  
A. W. Chatters

We study a class of rings which are closely related to principal ideal domains, and prove in particular that finitely-generated projective modules over such rings are free. Examples include the ring of Lipschitz quaternions; Z[a½] with d = —3 or d = —7; and any subring R of M2(Z) such that R ⊇ M2(pZ) for some prime number/? and R/M2(pZ) is a field with p2 elements.


1984 ◽  
Vol 25 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Andy J. Gray

This note is devoted to giving a conceptually simple proof of the Invertible Ideal Theorem [1, Theorem 4·6], namely that a prime ideal of a right Noetherian ring R minimal over an invertible ideal has rank at most one. In the commutative case this result may be easily deduced from the Principal Ideal Theorem by localizing and observing that an invertible ideal of a local ring is principal. Our proof is partially analogous in that it utilizes the Rees ring (denned below) in order to reduce the theorem to the case of a prime ideal minimal over an ideal generated by a single central element, which can be easily dealt with by adapting the commutative argument in [8]. The reader is also referred to the papers of Jategaonkar on the subject [5, 6, 7], particularly the last where another proof of the theorem appears which yields some additional information.


1974 ◽  
Vol 26 (5) ◽  
pp. 1186-1191 ◽  
Author(s):  
H. H. Brungs

Let R be a right hereditary domain in which all right ideals are two-sided (i.e., R is right invariant). We show that R is the intersection of generalized discrete valuation rings and that every right ideal is the product of prime ideals. This class of rings seems comparable with (and contains) the class of commutative Dedekind domains, but the rings considered here are in general not maximal orders and not Dedekind rings in the terminology of Robson [9]. The left order of a right ideal of such a ring is a ring of the same kind and the class contains right principal ideal domains in which the maximal right ideals are two-sided [6].


Sign in / Sign up

Export Citation Format

Share Document