Strengthening strategies of highway viaducts in Germany

Author(s):  
Balthasar Novák ◽  
Vazul Boros ◽  
Jochen Reinhard

<p>An entire generation of reinforced concrete highway bridges built in the post-war period in Germany meanwhile is approaching the end of their service life. The federal government and regional highway administrations have realized the need to repair, strengthen or to replace these structures and engage in extensive infrastructural investments to meet this challenge. It is not possible to replace those bridges in a short period, so that a guideline for reassessment of bridges has been developed to enable to prioritize the structures. Besides the replacement of the bridges, measures need to be taken in order to extend the lifespan of the decaying bridges until such replacement becomes available. Using the examples of four major highway viaducts near Frankfurt/Main and Hamburg efficient strategies to strengthen existing structures will be presented.</p><p>In the first example the efficient usage of external tendons to reduce the danger of a fatigue induced failure of a 50 years old prestressed concrete bridge will be presented.</p><p>A bridge of five spans with a total length of approximately 300 m showing inadequate shear resistance has been enhanced by installing inclined steel struts at the pillars. The struts are activated with a predefined force by built-in hydraulic jacks, while special spring elements used as supports reduce the effect of imposed deformations. Furthermore in critical areas of the webs additional shear reinforcement is mounted and subsequently covered by a concrete layer.</p><p>Another large viaduct was showing signs of fatigue at the coupling joints. A detailed analysis of the structure revealed, that the lifespan could be sufficiently prolonged by supporting the critical coupling joints with a predetermined force. The magnitude of the force is maintained constant by a balanced beam resembling a seesaw, which is mounted on a steel tower and fitted at its opposite end with counterweights.</p><p>The final example shows how to apply controlled uplift forces using an elastic bedded supporting beam construction.</p><p>These realized examples demonstrate, how with smart and intelligent measures critical bridges can be strengthened and an essential increase in lifespan can be achieved.</p>

2019 ◽  
Vol 21 (1) ◽  
pp. 15-31 ◽  
Author(s):  
Diego Gino ◽  
Paolo Castaldo ◽  
Gabriele Bertagnoli ◽  
Luca Giordano ◽  
Giuseppe Mancini

2010 ◽  
Vol 163-167 ◽  
pp. 2873-2879
Author(s):  
Ali Fadhil Naser ◽  
Zong Lin Wang

Jiamusi highway prestressed concrete bridge is located in the Jiamusi City within Heilongjiang province in the east north of China. The strengthening and repairing of the bridge structure can be provided an effective and economic solution in appropriate situation. The objective of this study are to monitor the construction process of external prestressing tendons for strengthening of Jiamusi highway prestressed concrete bridge. Monitoring process includes measurement of external prestressing tendons natural frequency, monitoring of tensile forces values of external prestressing tendons, monitoring of development of anchor beams cracks, and monitoring of anchor beam deformation. The results of monitoring process show that the box girder No. 11 has the largest values of proportional coefficient (K) and the maximum value is 327.8. Box girder No. 8 has the largest values of frequency, the maximum value is 3.499. Five levels of tension are used in the application of tensile force in the tension process of external prestressing tendons. These levels are level 1=248.2kN, level 2=496.4kN, level 3=744.6kN, level 4=992.8kN, and level 5=1241kN. The measured tendons elongation values of left box girder No.8 are more than the theoretical values. For left and right box girder No. 9, side external tendons of left box No. 10, and left and right box girder No. 11, the measured values are less than theoretical values of elongation. After tension process, there are no new cracks in the top, web, and bottom of anchor beam and a small number of cracks developed slightly. These cracks are found around ducts of external tendons. The length of cracks rang from 0.03m to 0.5m and width rang from 0.05 mm and 0.25mm. The longitudinal deformation of the interface and top of anchor beam is very small, ranging from 0.001mm to0.115mm, which averaged 0.026mm. The overall state of anchor beams and box girders during strengthening is good.


PCI Journal ◽  
1992 ◽  
Vol 37 (5) ◽  
pp. 68-79 ◽  
Author(s):  
Valerie E. Murray ◽  
Gregory C. Frantz

PCI Journal ◽  
1995 ◽  
Vol 40 (1) ◽  
pp. 59-80 ◽  
Author(s):  
Mohsen A. lssa ◽  
Ahmad-Talalldriss ◽  
lraj I. Kaspar ◽  
Salah Y. Khayyat

PCI Journal ◽  
2004 ◽  
Vol 49 (1) ◽  
pp. 92-104 ◽  
Author(s):  
Nabil F. Grace ◽  
S. B. Singh ◽  
Mina M. Shinouda ◽  
Sunup S. Mathew

Sign in / Sign up

Export Citation Format

Share Document