Bearing capacity of transversely prestressed concrete deck slabs

Author(s):  
Sana Amir ◽  
Cor van der Veen ◽  
Joost C. Walraven ◽  
Ane de Boer

All over the world, the safety of old structures is a question that has become increasingly important with the passage of time. In the Netherlands, there are a large number of thin, transversely prestressed concrete bridge decks, cast in-situ between the flanges of long prestressed concrete girders. These bridges date back to the 60’s and 70’s of the last century and are found to be critical in shear when analyzed using the recently implemented EN 1992-1-1:2005 (CEN 2005). With the on-going economic recession, it is an astute approach to check if such bridges can still be used for a few more decades, provided they are safe and reliable against the modern traffic loads. The results could then be applied on a wider range of structures, especially in developing countries facing economic constraints. Therefore, a prototype bridge was selected and experimental, numerical and theoretical approach was used to investigate its bearing capacity, loaded by a single and double wheelprint loadcase. Nineteen tests on a 1:2 scale model of the bridge were carried out in the laboratory. Later the bridge was modelled as a 3D solid, 1:2 scale using the finite element software TNO DIANA 9.4.4 and several nonlinear analyses were carried out. Furthermore, a theoretical analysis, using the bearing capacity obtained from the fib Model code 2010 punching shear provisions (based on the Critical Shear Crack Theory for prestressed slabs), and the experimental and numerical ultimate capacities, showed comparable results. A coefficient of variation of 11% and 9% was obtained when the experimental and the finite element analysis punching loads were compared with the theoretical results involving compressive membrane action, respectively. This led to the conclusion that the existing transversely prestressed concrete bridge decks still have sufficient residual bearing (punching shear) capacity and considerable saving in cost can be made if compressive membrane action is considered in the analysis.

2011 ◽  
Vol 243-249 ◽  
pp. 1737-1742 ◽  
Author(s):  
Ke Chen ◽  
Jian Yong Song ◽  
Shuo Zhang

The externally prestressed bridge finite element analysis module redeveloped based on ANSYS software is introduced,realizing finite element analysis method for externally prestressed concrete bridge. It is able to build the externally prestressed bridge finite element model, combined with Solid65 and Solid45 simulated concrete, and Link8 or Link10 simulated prestressed tendon. It is also able to bring material and geometric nonlinear effects into the analysis, for analyzing ultimate bearing capacity and local stress characterization of the externally prestressed structure. A bridge model is generated as an example for verifying the application of the module. Based on it, the model then is equipped with different allocation arrangements of internal and external tendons to analyze the mechanical characteristics of externally prestressed concrete bridge. Research is conducted for the effect on ultimate bearing capacity by allocation arrangement of tendons, and providing design suggestion and theoretic basis.


Author(s):  
Sana Amir ◽  
Cor van der Veen ◽  
Ane de Boer

This paper describes the modeling and analysis procedure of a 3D, solid, nonlinear finite element (FE) model of a bridge developed in the finite element analysis software package TNO DIANA to study the structural behavior in punching shear of transversely prestressed concrete deck slabs cast between flanges of long, pretensioned girders, and compressive membrane action. The numerical research was part of a broad project involving laboratory experiments carried out on a 1:2 scale model of such a bridge in Delft University of Technology. Both the experimental and numerical results showed much higher capacities than expected and this was attributed to the development of compressive membrane action in the plane of the slab. The numerical results were then compared with the experimentally found ultimate loads of eight basic test cases and it was discovered that the nonlinear FE models can predict the load carrying capacity quite accurately with a coefficient of variation of only 11%. It was concluded that punching shear failures can be reasonably modeled with non-linear finite element analysis of 3D solid models. Furthermore, using composed elements can lead to the determination of compressive membrane forces developed in a laterally restrained slab, which was previously difficult to determine using analytical techniques.


2019 ◽  
Vol 116 (4) ◽  
Author(s):  
Eva O. L. Lantsoght ◽  
Cor van der Veen ◽  
Rutger Koekkoek ◽  
Henk Sliedrecht

1991 ◽  
Vol 41 (3) ◽  
pp. 553-559 ◽  
Author(s):  
A.Samartín Quiroga ◽  
M.A.Utrilla Arroyo

Sign in / Sign up

Export Citation Format

Share Document