scholarly journals Nonlocal iterative differential equations under generalized fractional derivatives

Author(s):  
D. Vivek ◽  
E. M. Elsayed ◽  
K. Kanagarajan
Filomat ◽  
2017 ◽  
Vol 31 (17) ◽  
pp. 5457-5473 ◽  
Author(s):  
Yassine Adjabi ◽  
Fahd Jarad ◽  
Thabet Abdeljawad

In this paper, we obtain the Gronwall type inequality for generalized fractional operators unifying Riemann-Liouville and Hadamard fractional operators. We apply this inequality to the dependence of the solution of differential equations, involving generalized fractional derivatives, on both the order and the initial conditions. More properties for the generalized fractional operators are formulated and the solutions of initial value problems in certain new weighted spaces of functions are established as well.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1665
Author(s):  
Fátima Cruz ◽  
Ricardo Almeida ◽  
Natália Martins

In this work, we study variational problems with time delay and higher-order distributed-order fractional derivatives dealing with a new fractional operator. This fractional derivative combines two known operators: distributed-order derivatives and derivatives with respect to another function. The main results of this paper are necessary and sufficient optimality conditions for different types of variational problems. Since we are dealing with generalized fractional derivatives, from this work, some well-known results can be obtained as particular cases.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Di Xu ◽  
Fanwei Meng

Abstract In this article, we regard the generalized Riccati transformation and Riemann–Liouville fractional derivatives as the principal instrument. In the proof, we take advantage of the fractional derivatives technique with the addition of interval segmentation techniques, which enlarge the manners to demonstrate the sufficient conditions for oscillation criteria of certain fractional partial differential equations.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xianzhen Zhang ◽  
Zuohua Liu ◽  
Hui Peng ◽  
Xianmin Zhang ◽  
Shiyong Yang

Based on some recent works about the general solution of fractional differential equations with instantaneous impulses, a Caputo-Hadamard fractional differential equation with noninstantaneous impulses is studied in this paper. An equivalent integral equation with some undetermined constants is obtained for this fractional order system with noninstantaneous impulses, which means that there is general solution for the impulsive systems. Next, an example is given to illustrate the obtained result.


2010 ◽  
Vol 73 (10) ◽  
pp. 3462-3471 ◽  
Author(s):  
Eduardo Hernández ◽  
Donal O’Regan ◽  
Krishnan Balachandran

Sign in / Sign up

Export Citation Format

Share Document