scholarly journals Predictive control of a solar thermal system via on-line communication with a meteorological database server

Időjárás ◽  
2021 ◽  
Vol 125 (2) ◽  
pp. 211-227
Author(s):  
János Tóth ◽  
István Farkas

In this paper, the mathematical models of a solar thermal system which governs the solar thermal collector, the heat storage system, and the pump are presented. It has been shown that it is possible to connect a Simulink-based model to a meteorological database server using standard communication protocols by a C language-based component in order to import real-life weather information into the simulation. The setup of the model predictive control of this solar thermal system and the results of the simulation are also presented. This computationally heavy control method is possible to use on today's personal computers, and it can be expanded.

Author(s):  
Shahin Shafiee ◽  
Mary Helen McCay

Thermal storage in an important operational aspect of a solar thermal system which enables it to deliver power or energy when there is no sunlight available. Current thermal storage systems in solar thermal systems work based on transferring the generated heat from sunlight to a thermal mass material in an insulated reservoir and then withdraw it during dark hours. Some common thermal mass materials are stone, concrete, water, pressurized steam, phase changing materials, and molten salts. In the current paper, a hybrid thermal energy storage system which is based on two metal hydrides is proposed for a solar thermal system. The two hydrides which are considered for this system are magnesium hydride and lanthanum nickel. Although metal hydride Energy Storage Systems (ESS) suffer from slow response time which restricts them as a practical option for frequency regulation, off peak shaving and power supply stabilization; they can still demonstrate significant flexibility and good energy capacity. These specifications make them good candidates for thermal energy storage which are applicable to any capacity of a solar thermal system just by changing the size of the ESS unit.


Author(s):  
Todd Otanicar ◽  
Robert A. Taylor ◽  
Patrick E. Phelan ◽  
Ravi Prasher

The concept of using a direct absorbing nanofluid, a liquid-nanoparticle suspension, has recently been shown numerically and experimentally to be an efficient method for harvesting solar thermal energy. Studies show that the size and shape of the nanoparticles as well as the scattering mode (e.g. dependent, independent, and multiple) all impact the amount of energy absorbed and emitted by the nanofluid. In order to optimize the efficiency of a direct absorption solar thermal system the optimum nanoparticle-liquid combination needs to be developed. The optimum nanofluid for a direct absorption solar thermal collector is investigated numerically through the variation of particle size, including the impact of size on optical properties, and scattering mode. The study addresses both the absorption of solar energy within the fluid as well as the emission of the fluid.


Author(s):  
Tarik Ferhatbegovic ◽  
Gerhard Zucker ◽  
Peter Palensky

2019 ◽  
Vol 148 ◽  
pp. 420-429 ◽  
Author(s):  
Paweł Obstawski ◽  
Tomasz Bakoń ◽  
Dariusz Czekalski

Sign in / Sign up

Export Citation Format

Share Document