Volume 2: ASME 2016 Energy Storage Forum
Latest Publications


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791850237

Author(s):  
Sammy Houssainy ◽  
Reza Baghaei Lakeh ◽  
H. Pirouz Kavehpour

Human activity is overloading our atmosphere with carbon dioxide and other global warming emissions. These emissions trap heat, increase the planet’s temperature, and create significant health, environmental, and climate issues. Electricity production accounts for more than one-third of U.S. global warming emissions, with the majority generated by coal-fired power plants. These plants produce approximately 25 percent of total U.S. global warming emissions. In contrast, most renewable energy sources produce little to no global warming emissions. Unfortunately, generated electricity from renewable sources rarely provides immediate response to electrical demands, as the sources of generation do not deliver a regular supply easily adjustable to consumption needs. This has led to the emergence of storage as a crucial element in the management of energy, allowing energy to be released into the grid during peak hours and meet electrical demands. Compressed air energy storage can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. Most compressed air energy storage systems run at very high pressures, which possess inherent problems such as equipment failure, high cost, and inefficiency. This research aims to illustrate the potential of compressed air energy storage systems by illustrating two different discharge configurations and outlining key variables, which have a major impact on the performance of the storage system. Storage efficiency is a key factor to making renewable sources an independent form of sustainable energy. In this paper, a comprehensive thermodynamic analysis of a compressed air energy storage system is presented. Specifically, a detailed study of the first law of thermodynamics of the entire system is presented followed by a thorough analysis of the second law of thermodynamics of the complete system. Details of both discharge and charge cycles of the storage system are presented. The first and second law based efficiencies of the system are also presented along with parametric studies, which demonstrates the effects of various thermodynamic cycle variables on the total round-trip efficiency of compressed air energy storage systems.


Author(s):  
Tanvir R. Tanim ◽  
Mayank Garg ◽  
Christopher D. Rahn

Internal short-circuiting is the most dangerous abuse scenario for lithium ion batteries. A nail penetration test simulates the internal short circuit process by penetrating a test cell/pack with an electrically conductive nail. Pass or failure of the cell and/or chemistry is determined by the presence of smoke or flame following penetration. To understand and eliminate the safety concerns arising from the internal shorts, it is important to fully understand the cell/pack dynamics during the shorting process. Gathering useful data at the point of penetration during nail penetration tests is very challenging due to the inherent destructive nature of the test. This paper presents an intelligent nail (iNail) design consisting of four parts where multiple sensors (thermo-couples, strain gauges, etc.) can be conveniently placed for reliable and efficient data collection. The time history of temperature distributions through the cell/pack thickness can be recorded with the iNail without position control of the nail penetration tester, greatly simplifying the test. A prototype stainless steel iNail is manufactured with three embedded thermocouples. Nail penetration tests are conducted on fully charged 4 Ah gr/NCM pouch cells. The iNail successfully recorded the temperature time history at the penetration point during the tests. Pack level nail penetration tests (three pouch cells in parallel) were also performed with iNail temperature measurements.


Author(s):  
Shahin Shafiee ◽  
Mary Helen McCay

Thermal storage in an important operational aspect of a solar thermal system which enables it to deliver power or energy when there is no sunlight available. Current thermal storage systems in solar thermal systems work based on transferring the generated heat from sunlight to a thermal mass material in an insulated reservoir and then withdraw it during dark hours. Some common thermal mass materials are stone, concrete, water, pressurized steam, phase changing materials, and molten salts. In the current paper, a hybrid thermal energy storage system which is based on two metal hydrides is proposed for a solar thermal system. The two hydrides which are considered for this system are magnesium hydride and lanthanum nickel. Although metal hydride Energy Storage Systems (ESS) suffer from slow response time which restricts them as a practical option for frequency regulation, off peak shaving and power supply stabilization; they can still demonstrate significant flexibility and good energy capacity. These specifications make them good candidates for thermal energy storage which are applicable to any capacity of a solar thermal system just by changing the size of the ESS unit.


Author(s):  
Paul Sapin ◽  
Drazen Fabris ◽  
Alexander J. White ◽  
Aly Taleb ◽  
Christos N. Markides

Reciprocating-piston compressors and expanders are promising solutions to achieve higher overall efficiencies in various energy storage solutions. This article presents an experimental study of the exergetic losses in a gas spring. Considering a valveless piston-cylinder system allows us to focus on the thermodynamic losses due to thermal-energy exchange processes in reciprocating components. To differentiate this latter loss mechanism from mass leakages or frictional dissipation, three bulk parameters are measured. Pressure and volume are respectively measured with a pressure transducer and a rotary sensor. The gas temperature is estimated by measuring the Time-Of-Flight (TOF) of an ultrasonic pulse signal across the gas chamber. This technique has the advantage of being fast and non-invasive. The measurement of three bulk parameters allows us to calculate the work as well as the heat losses throughout a cycle. The thermodynamic loss is also measured for different rotational speeds. The results are in good agreement with previous experimental studies and can be employed to validate CFD or analytical studies currently under development.


Author(s):  
Kent Udell ◽  
Michael Beeman

The performance of CAES is evaluated for various configurations, with and without thermal energy storage. First, a conventional compressed air energy storage process is modeled using a time series iterative forward differencing method to simulate the round trip efficiency, exergy storage, cavern temperatures and pressures, and the gas expander exit temperature of a CAES plant. The computational model was validated experimentally by comparing trended data of the compression cycle of a 280 HP Gardener-Denver tandem horizontal two-stage compressor to computational results. It was found that the process of cooling the compressors resulted in a large exergy loss and the inefficiencies of the expanders lead to higher temperature gas being exhausted back to ambient pressures. Second, Advanced Adiabatic Compressed Air Energy Storage (AACAES) was simulated to study the effectiveness of storing the thermal energy removed from the compressors to be added to the compressed air as it enters the expanders at a later time. Third, the concept of increasing the capacity of the thermal energy storage systems to allow recharge with concentrated solar heat was explored. It was found that the thermal efficiency of converting the solar thermal energy to power would be high (> 60%). Further, the expander exhaust temperature and exergy are high (> 500 K), implying that additional waste heat energy recovery will be possible. Taken together, the results of this study show that an integrated, high efficiency, on-demand, water-free, solar energy delivery system is possible if combined with an AACAES system.


Author(s):  
Reza Baghaei Lakeh ◽  
Ian C. Villazana ◽  
Sammy Houssainy ◽  
Kevin R. Anderson ◽  
H. Pirouz Kavehpour

The share of renewable energy sources in the power grid is showing an increasing trend world-wide. Most of the renewable energy sources are intermittent and have generation peaks that do not correlate with peak demand. The stability of the power grid is highly dependent on the balance between power generation and demand. Compressed Air Energy Storage (CAES) systems have been utilized to receive and store the electrical energy from the grid during off-peak hours and play the role of an auxiliary power plant during peak hours. Using Thermal Energy Storage (TES) systems with CAES technology is shown to increase the efficiency and reduce the cost of generated power. In this study, a modular solid-based TES system is designed to store thermal energy converted from grid power. The TES system stores the energy in the form of internal energy of the storage medium up to 900 K. A three-dimensional computational study using commercial software (ANSYS Fluent) was completed to test the performance of the modular design of the TES. It was shown that solid-state TES, using conventional concrete and an array of circular fins with embedded heaters, can be used for storing heat for a high temperature hybrid CAES (HTH-CAES) system.


Author(s):  
Clemens Schneider ◽  
Sebastian Braun ◽  
Torsten Klette ◽  
Steffen Härtelt ◽  
Alexander Kratzsch

Germany’s current energy policy is focused on the replacement of the conventional powered electrical energy supply system by renewable sources. This leads to increasing requirements on the flexibility for the conventional thermal power plants. Larger differences between energy supply from renewable energy sources and energy demand in the grid lead to high dynamic requirements with respect to the load change transients. Furthermore, a reduction of the required minimum load of existing thermal power plants is necessary. The existing power plants are indispensable for securing the network stability of the power grid. Accordingly, activities to improve the flexibility of existing power plants are required. By the use of thermal energy storage (TES) it is possible to increase the load change transient. Furthermore, it is possible to temporarily provide an increased generator power and reduce the minimum technical load of the unit. Currently, there is no closed methodical approach for the load profile-dependent and location-based dimensioning and integration of TES into thermal power plants. The aim is to generate contributions for the development of a universal design method. This requires the provision of characteristics for dimensioning and integration of TES into thermal processes. For this purpose, it is necessary to derive quantifiable information on the required capacity, performance and stationary and dynamic operating conditions. Starting from analyzing the anticipated, site-specific load profiles the derivation of concepts for technical implementation, feedback on the process and cost of the thermal storage unit takes place. In order to investigate the technical feasibility, the implementation of storage and the associated control concepts as well as to validate the developed design models, the test facility THERESA has been built at the University of Applied Sciences in Zittau (Germany). The acronym THERESA is the abbreviation for thermal energy storage facility. This test facility includes a reconstructed thermal water-steam process, similar to a power plant with integrated TES. The test facility is unique in Germany and enables the delivery of saturated steam up to 160 bars at 347 ° and superheated steam up to 60 bars at 350 °C with an overall thermal power of 640 kW. The design, planning and construction of the facility took 3 years and required an investment volume of 3 mill. Euro. The facility includes two preheater stages, steam generator, super heater, direct TES with mixing preheater and a heat sink. The TES with a volume of 600 L as well as the mixing preheater are prototypes which developed for the special requirements of the facility. Based on this facility, it is possible to investigate methods for the flexibilization of thermal power plants with TES under realistic parameters. Furthermore, the test facility allows the development of control and regulatory approaches as well as the validation of simulation models for process expansion of thermal power plants. Initial investigations show the impact of a simulated load reduction at the heat sink on the system behavior. Here, the load reduction takes place from the heat sink in the storage without changing the steam production. The development and construction of the test facility were funded by the Free State of Saxony and the European Union. The further work on the development of the integration methods are funded by the European Social Fund ESF.


Author(s):  
Irene Berry ◽  
Glen Merfeld ◽  
Patrick Riley

The success of grid scale energy storage hinges on our ability to solve real problems economically. By mapping energy storage physics to application economics, this paper offers a technology neutral look at how energy storage can solve real problems. A value analytics methodology was developed that combines the physics of energy storage, application power commands, and market-specific economic constructs. This approach evaluates and optimizes the value of energy storage for specific projects by providing insight into the tradeoffs between the lifecycle costs and revenues. These analytics calculate the net present value (NPV) and internal rate of return (IRR) of select energy storage assets, markets, and applications by considering these key factors: • Duty profiles and control strategies • Market economics and revenue streams • Asset performance at cell, module, and system levels • Price projections including balance of plant (BOP) • Cycle and calendar life • Project length and financing terms The value analytics methodology combines three model streams. The first takes a high fidelity load profile (for example, the power output of a building, wind turbine, or solar farm), imposes a specific control strategy, and calculates revenue streams in a selected market. From this first model stream a storage power command is generated. This power command is fed into the second model stream that calculates the required size and price of a given storage type. Finally, a third model stream uses empirical life models to calculate degradation rates, replacement intervals, and maintenance costs. These are rolled up into a project specific financial analysis that forecasts project NPV and IRR. The underlying engine for this methodology is a large performance and price database of over 100 commercial and emerging energy storage assets that spans a wide range of technologies from ultracapacitors and flywheels to lead acid and lithium-ion batteries. The physics based performance of each asset is captured as an equivalent circuit model. These models are exercised to create performance envelops that describe the rate dependent power capability as a function of the type, amount, and age of installed storage. The energy storage value analytics described in this paper can be used to test key sensitivities. This methodology has been applied to standalone energy storage systems as well as the combination of energy storage with renewables and distributed power generation. As shown, the methodology is relevant for an even wider range of applications. Several solution maps will be shared that reveal, by market segment, the energy storage type, amount, and application that create the greatest customer value. This type of informed design and dispatch will solve real problems, create new value streams, and open new markets for grid scale energy storage.


Author(s):  
A. Hays ◽  
E. Borquist ◽  
D. Bailey ◽  
D. Wood ◽  
L. Weiss

Thermal energy is a leading topic of discussion in energy conservation and environmental fields. Specifically for large-scale applications solar energy and concentrated solar power (CSP) systems use techniques that include thermal energy storage systems and phase change materials to harvest energy. However, on the smaller centimeter scale, there have been historically fewer investigations of these same techniques. The main goal of this paper is to investigate thermal energy storage (TES) as applied to a small scale system for thermal energy capture. Typical large-scale TES consists of a phase change material that usually employs a wax or oil medium held within a conductive container. The system stores the energy when the wax medium undergoes a phase change. In typical applications like buildings, the system absorbs and stores incoming thermal energy during the day, and releases it back to the surrounding environment as temperatures cool at night. This paper presents a new TES unit designed to integrate with a thermoelectric for energy harvesting application in small, cm-scale applications. In this manner, the TES serves as a thermal battery and source for the thermoelectric, even when originating power supply is interrupted. A unique feature of this TES is the inclusion of internal heat pipes. These heat pipes are fabricated from copper tubing and filled with working fluid, mounted vertically, and immersed in the wax medium of the TES. This transfers heat to the wax by means of thermal conductivity enhancement as an element of the heat pipe operation. This represents a first of its kind in this small-scale, thermal harvesting application. As tested, the TES rests atop a low temperature (60 °C) heat source with a heat sink as the final setup component. The heat sink serves to simulate thermal energy rejection to a future thermoelectric device. To measure the temperature change of the device, thermocouples are placed on either side of the TES, and a third placed on the heat source to ensure that the energy input is appropriate and constant. Heat flux sensors (HFS) are placed between the heat source and the TES and between the TES and heat sink to monitor heat transferred to and from the device. The TES is tested in a variety constructions as part of this effort. Basic design of the storage volume as well as fluid fill levels within the heat pipes are considered. Varying thermal energy inputs are also studied. Temperature and heat flux data are compared to show the thermal absorption capability and operating average thermal conductivities of the TES units. The baseline average thermal conductivity of the TES is approximately 0.5 W/mK. This represents the TES with wax alone filling the internal volume. Results indicate a fully functional, heat pipe TES capable of 8.23 W/mK.


Sign in / Sign up

Export Citation Format

Share Document