scholarly journals Projector-Based Augmented Reality System for Computer Assisted Orthopaedic Surgery

10.29007/9sb7 ◽  
2020 ◽  
Author(s):  
Yuan Gao ◽  
Le Xie ◽  
Guoyan Zheng

This paper presents a projector-based augmented reality (AR) system for Computer- Assisted Orthopaedic Surgery (CAOS). After calibration, our AR system allows for projection of not only the virtual model directly on the surface of the target organ to create an augmented reality but also important clinical information such as distance and angular deviations from a surgical plan, which are important for various computer-assisted surgical procedures such as trajectory drilling and fracture reduction. The feasibility and accuracy of the system is experimentally validated on a 3D printed phantom model with pyramid shape, a dry goat bone and an in vitro pig leg. An average projection distance error of 1.03±0.58mm and an average drill alignment error of 1.17±0.43°were found. The results demonstrate the efficacy of the proposed AR system.




10.29007/72d4 ◽  
2018 ◽  
Author(s):  
He Liu ◽  
Edouard Auvinet ◽  
Joshua Giles ◽  
Ferdinando Rodriguez Y Baena

Computer Aided Surgery (CAS) is helpful, but it clutters an already overcrowded operating theatre, and tends to disrupt the workflow of conventional surgery. In order to provide seamless computer assistance with improved immersion and a more natural surgical workflow, we propose an augmented-reality based navigation system for CAS. Here, we choose to focus on the proximal femoral anatomy, which we register to a plan by processing depth information of the surgical site captured by a commercial depth camera. Intra-operative three-dimensional surgical guidance is then provided to the surgeon through a commercial augmented reality headset, to drill a pilot hole in the femoral head, so that the user can perform the operation without additional physical guides. The user can interact intuitively with the system by simple gestures and voice commands, resulting in a more natural workflow. To assess the surgical accuracy of the proposed setup, 30 experiments of pilot hole drilling were performed on femur phantoms. The position and the orientation of the drilled guide holes were measured and compared with the preoperative plan, and the mean errors were within 2mm and 2°, results which are in line with commercial computer assisted orthopedic systems today.





2019 ◽  
Vol 72 ◽  
pp. 55-65 ◽  
Author(s):  
Frederic Picard ◽  
Angela Helen Deakin ◽  
Philip E. Riches ◽  
Kamal Deep ◽  
Joseph Baines




Sign in / Sign up

Export Citation Format

Share Document