scholarly journals A Simulated Annealing Heuristic For The Green Vehicle Routing Problem

2015 ◽  
Vol 1 (2) ◽  
pp. 17-21
Author(s):  
Moch Yasin ◽  
Vincent F. Yu

Nowadays, the encouragement of the use of green vehicle is greater than it previously has ever been. In the United States, transportation sector is responsible for 28% of national greenhouse gas emissions in 2009. Therefore, there have been many studies devoted to the green supply chain management including the green vehicle routing problem (GVRP). GVRP plays a very important role in helping organizations with alternative fuel-powered vehicle fleets overcome obstacles resulted from limited vehicle driving range in conjunction with limited fuel infrastructure. The objective of GVRP is to minimize total distance traveled by the alternative fuel vehicle fleet. This study develops a mathematical model and a simulated annealing (SA) heuristic for the GVRP. Computational results indicate that the SA heuristic is capable of obtaining good GVRP solutions within a reasonable amount of time.

Author(s):  
Fernando Francisco Sandoya Sánchez ◽  
Carmen Andrea Letamendi Lazo ◽  
Fanny Yamel Sanabria Quiñónez

This chapter presents the best-known heuristics and metaheuristics that are applied to solve the capacitated vehicle routing problem (CVRP), which is the generalization of the TSP, in which the nodes are visited by more than one route. To find out which algorithm obtains better results, there are 30 test instances used, which are grouped into 3 sets of problems according to the position of the nodes. The study begins with an economic impact analysis of the transportation sector in companies, which represents up to 20% of the final cost of the product. This case study focuses on the CVRP for its acronym capacitated vehicle routing problem, analyzing the best-known heuristics such as Clarke & Wright and sweep, and the algorithms GRASP and simulated annealing metaheuristics based.


Author(s):  
A. Sruthi ◽  
S.P. Anbuudayasankar ◽  
G. Jeyakumar

The greenhouse gas emissions from the transportation sector are one of the major contributors to global warming today. Freight share to GHG emissions is likely to increase 2-fold by 2050. This makes it critical for CO2 emissions to be reduced through an optimized transportation strategy. Vehicle routing, when done efficiently, can reduce these emissions across countries. In this attempt, the traditional distance minimization objective of the vehicle routing problem has been replaced with an energy-emission-centric objective. A model is formulated taking energy and emissions into simultaneous consideration and a typical VRP problem has been evaluated using a genetic algorithm. The application of the proposed model is observed to reduce emissions significantly compared to conventional models. Considering the possibility of increase in carbon tax in future, energy-emission minimized routing would not only aid “green logistics,” but also reduce the environmental costs incurred.


Sign in / Sign up

Export Citation Format

Share Document