Eco-logistics: environmental and economic implications of alternative fuel vehicle routing problem

Author(s):  
Ramin Raeesi ◽  
Michael J. O' ◽  
N.A. Sullivan
2015 ◽  
Vol 1 (2) ◽  
pp. 17-21
Author(s):  
Moch Yasin ◽  
Vincent F. Yu

Nowadays, the encouragement of the use of green vehicle is greater than it previously has ever been. In the United States, transportation sector is responsible for 28% of national greenhouse gas emissions in 2009. Therefore, there have been many studies devoted to the green supply chain management including the green vehicle routing problem (GVRP). GVRP plays a very important role in helping organizations with alternative fuel-powered vehicle fleets overcome obstacles resulted from limited vehicle driving range in conjunction with limited fuel infrastructure. The objective of GVRP is to minimize total distance traveled by the alternative fuel vehicle fleet. This study develops a mathematical model and a simulated annealing (SA) heuristic for the GVRP. Computational results indicate that the SA heuristic is capable of obtaining good GVRP solutions within a reasonable amount of time.


2019 ◽  
Vol 10 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Özgür Kabadurmuş ◽  
Mehmet Serdar Erdoğan ◽  
Yiğitcan Özkan ◽  
Mertcan Köseoğlu

Abstract Distribution is one of the major sources of carbon emissions and this issue has been addressed by Green Vehicle Routing Problem (GVRP). This problem aims to fulfill the demand of a set of customers using a homogeneous fleet of Alternative Fuel Vehicles (AFV) originating from a single depot. The problem also includes a set of Alternative Fuel Stations (AFS) that can serve the AFVs. Since AFVs started to operate very recently, Alternative Fuel Stations servicing them are very few. Therefore, the driving span of the AFVs is very limited. This makes the routing decisions of AFVs more difficult. In this study, we formulated a multi-objective optimization model of Green Vehicle Routing Problem with two conflicting objective functions. While the first objective of our GVRP formulation aims to minimize total CO2 emission, which is proportional to the distance, the second aims to minimize the maximum traveling time of all routes. To solve this multi-objective problem, we used ɛ-constraint method, a multi-objective optimization technique, and found the Pareto optimal solutions. The problem is formulated as a Mixed-Integer Linear Programming (MILP) model in IBM OPL CPLEX. To test our proposed method, we generated two hypothetical but realistic distribution cases in Izmir, Turkey. The first case study focuses on an inner-city distribution in Izmir, and the second case study involves a regional distribution in the Aegean Region of Turkey. We presented the Pareto optimal solutions and showed that there is a tradeoff between the maximum distribution time and carbon emissions. The results showed that routes become shorter, the number of generated routes (and therefore, vehicles) increases and vehicles visit a lower number of fuel stations as the maximum traveling time decreases. We also showed that as maximum traveling time decreases, the solution time significantly decreases.


Optimization ◽  
2017 ◽  
Vol 66 (11) ◽  
pp. 1851-1862 ◽  
Author(s):  
Yuvraj Gajpal ◽  
M. M. S. Abdulkader ◽  
Shuai Zhang ◽  
S. S. Appadoo

Author(s):  
Maurizio Bruglieri ◽  
Simona Mancini ◽  
Ornella Pisacane

AbstractThe Green Vehicle Routing Problem with Capacitated Alternative Fuel Stations assumes that, at each station, the number of vehicles simultaneously refueling cannot exceed the number of available pumps. The state-of-the-art solution method, based on the generation of all feasible non-dominated paths, performs well only with up to 2 pumps. In fact, it needs cloning the paths between every pair of pumps. To overcome this issue, in this paper, we propose new path-based MILP models without cloning paths, for both the scenario with private stations (i.e., owned by the fleet manager) and that with public stations. Then, a more efficient cutting plane approach is designed for addressing both the scenarios. Numerical results, obtained considering a set of benchmark instances ad hoc generated for this work, show both the efficiency and the effectiveness of this new cutting plane approach proposed. Finally, a sensitivity analysis, carried out by varying the number of customers to be served and their distribution, shows very good performances of the proposed approach.


2020 ◽  
Author(s):  
Matheus Diógenes Andrade ◽  
Fábio Luiz Usberti

This work aims to investigate the Green Vehicle Routing Problem (G-VRP), which is an NP-Hard problem that generalizes the Vehicle Routing Problem (VRP) and integrates it with the green logistics. In the G-VRP, electric vehicles with limited autonomy can be recharged at Alternative Fuel Stations (AFSs) to keep visiting customers. This research proposes MILP formulations, valid inequalities, and preprocessing conditions.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Nur Mayke Eka Normasari ◽  
Nurul Lathifah

Transportation, as a part of the supply chain process, contributes to carbon emission which leads to climate change and global warming. This environmental issue gives an impact to decisions regarding the supply chain of a company. One way to deal with this issue is by analyzing their vehicle routing problem. In this study, the issue about routing problems in green supply chain by considering the heterogeneous fleet is being discussed. One variant of Green Vehicle Routing Problem (GVRP) reviewed in this paper is about Heterogeneous Alternative Fuel Vehicles for Green Vehicle Routing Problem (HAFVGVRP). The purpose of this study is to review the development of GVRP with heterogeneous alternative fuel vehicles and the gap or state-of-the-art on existing researches. The review was classified according to the objectives, type of fleet, and solution used. Moreover, this study also presents the trend and direction of further research.


2020 ◽  
Vol 12 (8) ◽  
pp. 3500 ◽  
Author(s):  
Weiheng Zhang ◽  
Yuvraj Gajpal ◽  
Srimantoorao. S. Appadoo ◽  
Qi Wei

A Multi-Depot Green Vehicle Routing Problem (MDGVRP) is considered in this paper. In MDGVRP, Alternative Fuel-powered Vehicles (AFVs) start from different depots, serve customers, and, at the end, return to the original depots. The limited fuel tank capacity of AFVs forces them to visit Alternative Fuel Stations (AFS) for refueling. The objective is to minimize the total carbon emissions. A Two-stage Ant Colony System (TSACS) is proposed to find a feasible and acceptable solution for this NP-hard (Non-deterministic polynomial-time) optimization problem. The distinct characteristic of the proposed TSACS is the use of two distinct types of ants for two different purposes. The first type of ant is used to assign customers to depots, while the second type of ant is used to find the routes. The solution for the MDGVRP is useful and beneficial for companies that employ AFVs to deal with the various inconveniences brought by the limited number of AFSs. The numerical experiments confirm the effectiveness of the proposed algorithms in this research.


Sign in / Sign up

Export Citation Format

Share Document