scholarly journals Relation between Sheffer Stroke and Hilbert algebras

2021 ◽  
Vol 14 (1) ◽  
pp. 245-268
Author(s):  
Tahsin Oner ◽  
Tugce Katican ◽  
Arsham Borumand Saeid
2021 ◽  
Vol 40 (1) ◽  
pp. 759-772
Author(s):  
Tahsin Oner ◽  
Tugce Katican ◽  
Arsham Borumand Saeid

The aim of this study is to introduce fuzzy filters of Sheffer stroke Hilbert algebra. After defining fuzzy filters of Sheffer stroke Hilbert algebra, it is shown that a quotient structure of this algebra is described by its fuzzy filter. In addition to this, the level filter of a Sheffer stroke Hilbert algebra is determined by its fuzzy filter. Some fuzzy filters of a Sheffer stroke Hilbert algebra are defined by a homomorphism. Normal and maximal fuzzy filters of a Sheffer stroke Hilbert algebra and the relation between them are presented. By giving the Cartesian product of fuzzy filters of a Sheffer stroke Hilbert algebra, various properties are examined.


2014 ◽  
Vol 23 (2) ◽  
pp. 217-234 ◽  
Author(s):  
J. L. Castiglioni ◽  
H. J. San Martin
Keyword(s):  

1976 ◽  
Vol 15 (1) ◽  
pp. 1-12 ◽  
Author(s):  
A.L. Carey

In the last three years a number of people have investigated the orthogonality relations for square integrable representations of non-unimodular groups, extending the known results for the unimodular case. The results are stated in the language of left (or generalized) Hilbert algebras. This paper is devoted to proving the orthogonality relations without recourse to left Hilbert algebra techniques. Our main technical tool is to realise the square integrable representation in question in a reproducing kernel Hilbert space.


Author(s):  
José Antonio Cuenca Mira

Let A be a real (non-associative) algebra which is normed as real vector space, with a norm ‖·‖ deriving from an inner product and satisfying ‖ac‖ ≤ ‖a‖‖c‖ for any a,c ∈ A. We prove that if the algebraic identity (a((ac)a))a = (a2c)a2 holds in A, then the existence of an idempotent e such that ‖e‖ = 1 and ‖ea‖ = ‖a‖ = ‖ae‖, a ∈ A, implies that A is isometrically isomorphic to ℝ, ℂ, ℍ, $\mathbb{O}$,\, $\stackrel{\raisebox{4.5pt}[0pt][0pt]{\fontsize{4pt}{4pt}\selectfont$\star$}}{\smash{\CC}}$,\, $\stackrel{\raisebox{4.5pt}[0pt][0pt]{\fontsize{4pt}{4pt}\selectfont$\star$}}{\smash{\mathbb{H}}}$,\, $\stackrel{\raisebox{4.5pt}[0pt][0pt]{\fontsize{4pt}{4pt}\selectfont$\star$}}{\smash{\mathbb{O}}}$ or ℙ. This is a non-associative extension of a classical theorem by Ingelstam. Finally, we give some applications of our main result.


1975 ◽  
Vol 78 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Simon Wassermann

A deep result in the theory of W*-tensor products, the Commutation theorem, states that if M and N are W*-algebras faithfully represented as von Neumann algebras on the Hilbert spaces H and K, respectively, then the commutant in L(H ⊗ K) of the W*-tensor product of M and N coincides with the W*-tensor product of M′ and N′. Although special cases of this theorem were established successively by Misonou (2) and Sakai (3), the validity of the general result remained conjectural until the advent of the Tomita-Takesaki theory of Modular Hilbert algebras (6). As formulated, the Commutation theorem is a spatial result; that is, the W*-algebras in its statement are taken to act on specific Hilbert spaces. Not surprisingly, therefore, known proofs rely heavily on techniques of representation theory.


1982 ◽  
Vol 34 (6) ◽  
pp. 1245-1250 ◽  
Author(s):  
A. van Daele

Let M be a von Neumann algebra acting on a Hilbert space and assume that M has a separating and cyclic vector ω in . Then it can happen that M contains a proper von Neumann subalgebra N for which ω is still cyclic. Such an example was given by Kadison in [4]. He considered and acting on where is a separable Hilbert space. In fact by a result of Dixmier and Maréchal, M, M′ and N have a joint cyclic vector [3]. Also Bratteli and Haagerup constructed such an example ([2], example 4.2) to illustrate the necessity of one of the conditions in the main result of their paper. In fact this situation seems to occur rather often in quantum field theory (see [1] Section 24.2, [3] and [4]).


1978 ◽  
Vol 72 (3) ◽  
pp. 468-468
Author(s):  
Alessandro Fig{à-Talamanca ◽  
Giancarlo Mauceri
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document