scholarly journals Pressure Dependent Analysis in Water Distribution Networks Using Particle Swarm Optimization

2018 ◽  
Vol 22 (3) ◽  
pp. 43-53
Author(s):  
M. A. Geranmehr ◽  
M. R. Chamani ◽  
K. Asghari ◽  
◽  
◽  
...  
2021 ◽  
Vol 218 ◽  
pp. 18-31
Author(s):  
Douglas F. Surco ◽  
Diogo H. Macowski ◽  
Flávia A.R. Cardoso ◽  
Thelma P.B. Vecchi ◽  
Mauro A.S.S. Ravagnani

RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
José Eloim Silva de Macêdo ◽  
José Roberto Gonçalves de Azevedo ◽  
Saulo de Tarso Marques Bezerra

ABSTRACT Water distribution network (WDN) optimization has received special attention from various technicians and researchers, mainly due to its high costs of implementation, operation and maintenance. However, the low computational efficiency of most developed algorithms makes them difficult to apply in large-scale WDN design problems. This article presents a hybrid particle swarm optimization and tabu search (H-PSOTS) algorithm for WDN design. Incorporating tabu search (TS) as a local improvement procedure enables the H-PSOTS algorithm to avoid local optima and show satisfactory performance. Pure particle swarm optimization (PSO) and H-PSOTS algorithms were applied to three benchmark networks proposed in the literature: the Balerma irrigation network, the ZJ network and the Rural network. The hybrid methodology obtained good results when seeking an optimal solution and revealed high computational performance, making it a new option for the optimal design of real water distribution networks.


2018 ◽  
Vol 104 ◽  
pp. 99-110 ◽  
Author(s):  
Alireza Moghaddam ◽  
Amin Alizadeh ◽  
Alireza Faridhosseini ◽  
Ali Naghi Ziaei ◽  
Danial Fallah Heravi

2017 ◽  
Vol 18 (2) ◽  
pp. 660-678 ◽  
Author(s):  
Douglas F. Surco ◽  
Thelma P. B. Vecchi ◽  
Mauro A. S. S. Ravagnani

Abstract In the present work, a model is presented for the optimization of water distribution networks (WDN). The developed model can be used to verify node pressures, head losses, and fluid flow rate and velocity in each pipe. The algorithm is based on particle swarm optimization (PSO), considering real and discrete variables and avoiding premature convergence to local optima using objective function penalization. The model yields the minimum cost of the network, the node pressures and the velocities in the pipes. The pressures and velocities are calculated using the hydraulic simulator Epanet. Some benchmark problems are used to test the applicability of the developed model, considering WDN for small-, medium-, and large-scale problems. Obtained results are consistent with those found in the literature.


2018 ◽  
Vol 106 ◽  
pp. 312-329 ◽  
Author(s):  
Douglas F. Surco ◽  
Thelma P.B. Vecchi ◽  
Mauro A.S.S. Ravagnani

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1334
Author(s):  
Mohamed R. Torkomany ◽  
Hassan Shokry Hassan ◽  
Amin Shoukry ◽  
Ahmed M. Abdelrazek ◽  
Mohamed Elkholy

The scarcity of water resources nowadays lays stress on researchers to develop strategies aiming at making the best benefit of the currently available resources. One of these strategies is ensuring that reliable and near-optimum designs of water distribution systems (WDSs) are achieved. Designing WDSs is a discrete combinatorial NP-hard optimization problem, and its complexity increases when more objectives are added. Among the many existing evolutionary algorithms, a new hybrid fast-convergent multi-objective particle swarm optimization (MOPSO) algorithm is developed to increase the convergence and diversity rates of the resulted non-dominated solutions in terms of network capital cost and reliability using a minimized computational budget. Several strategies are introduced to the developed algorithm, which are self-adaptive PSO parameters, regeneration-on-collision, adaptive population size, and using hypervolume quality for selecting repository members. A local search method is also coupled to both the original MOPSO algorithm and the newly developed one. Both algorithms are applied to medium and large benchmark problems. The results of the new algorithm coupled with the local search are superior to that of the original algorithm in terms of different performance metrics in the medium-sized network. In contrast, the new algorithm without the local search performed better in the large network.


Sign in / Sign up

Export Citation Format

Share Document