scholarly journals Accounts for the groups SL(2,U), U = 41 and 43

2021 ◽  
Vol 26 (4) ◽  
pp. 31-34
Author(s):  
Niran Sabah ◽  
Sherouk Awad Khalaf

The  circular retail  for  the  groups  (2,)  where    =  41  and  43  compute   in  this  paper  from  the  ordinary  character table  and  the  character  table (ch.t.) of  rational  representations (r.rep.) for  each  group.

2020 ◽  
Vol 561 ◽  
pp. 111-130
Author(s):  
Thomas Breuer ◽  
Kay Magaard ◽  
Robert A. Wilson

2021 ◽  
Vol 26 (4) ◽  
pp. 27-30
Author(s):  
Niran Sabah ◽  
Noor Alhuda Samir Salem

The ordinary character table and the character table (cha.ta.) of rational representations (ra.repr.) for projective special linear groups                   (2,41) and  (2,43) find in this work to find the cyclic partition for each group


1988 ◽  
Vol 104 (2) ◽  
pp. 207-213 ◽  
Author(s):  
Peter Symonds

If G is a group with a subgroup H and R is a Dedekind domain, then an H-projective RG-lattice is an RG-lattice that is a direct summand of an induced lattice for some RH-lattice N: they have been studied extensively in the context of modular representation theory. If H is the trivial group these are the projective lattices. We define a relative character χG/H on H-projective lattices, which in the case H = 1 is equivalent to the Hattori–Stallings trace for projective lattices (see [5, 8]), and in the case H = G is the ordinary character. These characters can be used to show that the R-ranks of certain H-projective lattices must be divisible by some specified number, generalizing some well-known results: cf. Corollary 3·6. If for example we take R = ℤ, then |G/H| divides the ℤ-rank of any H-projective ℤG-lattice.


2012 ◽  
Vol 12 (02) ◽  
pp. 1250150 ◽  
Author(s):  
JINSHAN ZHANG ◽  
ZHENCAI SHEN ◽  
SHULIN WU

The finite groups in which every irreducible character vanishes on at most three conjugacy classes were characterized [J. Group Theory13 (2010) 799–819]. Dually, we investigate the finite groups whose columns contain a small number of zeros in the character table.


1985 ◽  
Vol 37 (3) ◽  
pp. 442-451 ◽  
Author(s):  
David Gluck

Much information about a finite group is encoded in its character table. Indeed even a small portion of the character table may reveal significant information about the group. By a famous theorem of Jordan, knowing the degree of one faithful irreducible character of a finite group gives an upper bound for the index of its largest normal abelian subgroup.Here we consider b(G), the largest irreducible character degree of the group G. A simple application of Frobenius reciprocity shows that b(G) ≧ |G:A| for any abelian subgroup A of G. In light of this fact and Jordan's theorem, one might seek to bound the index of the largest abelian subgroup of G from above by a function of b(G). If is G is nilpotent, a result of Isaacs and Passman (see [7, Theorem 12.26]) shows that G has an abelian subgroup of index at most b(G)4.


2010 ◽  
Vol 17 (03) ◽  
pp. 389-414 ◽  
Author(s):  
Faryad Ali ◽  
Jamshid Moori

The Fischer group [Formula: see text] is the largest 3-transposition sporadic group of order 2510411418381323442585600 = 222.316.52.73.11.13.17.23.29. It is generated by a conjugacy class of 306936 transpositions. Wilson [15] completely determined all the maximal 3-local subgroups of Fi24. In the present paper, we determine the Fischer-Clifford matrices and hence compute the character table of the non-split extension 37· (O7(3):2), which is a maximal 3-local subgroup of the automorphism group Fi24 of index 125168046080 using the technique of Fischer-Clifford matrices. Most of the calculations are carried out using the computer algebra systems GAP and MAGMA.


2007 ◽  
Vol 315 (1) ◽  
pp. 301-325 ◽  
Author(s):  
Herbert Pahlings
Keyword(s):  

10.37236/8186 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Sheila Sundaram

In previous work of this author it was conjectured that the sum of power sums $p_\lambda,$ for partitions $\lambda$ ranging over an interval $[(1^n), \mu]$ in reverse lexicographic order, is Schur-positive. Here we investigate this conjecture and establish its truth in the following special cases: for $\mu\in [(n-4,1^4), (n)]$  or $\mu\in [(1^n), (3,1^{n-3})], $ or $\mu=(3, 2^k, 1^r)$ when $k\geq 1$ and $0\leq r\leq 2.$  Many new Schur positivity questions are presented.


Sign in / Sign up

Export Citation Format

Share Document