The Chern Classes and Kodaira Dimension of a Minimal Variety

Author(s):  
Yoichi Miyaoka
2001 ◽  
Vol 64 (2) ◽  
pp. 327-343 ◽  
Author(s):  
ADRIAN LANGER

Let X be a smooth projective surface of non-negative Kodaira dimension. Bogomolov [1, Theorem 5] proved that c21 [les ] 4c2. This was improved to c21 [les ] 3c2 by Miyaoka [12, Theorem 4] and Yau [19, Theorem 4]. Equality c21 [les ] 3c2 is attained, for example, if the universal cover of X is a ball (if κ(X) = 2 then this is the only possibility). Further generalizations of inequalities for Chern classes for some singular surfaces with (fractional) boundary were obtained by Sakai [16, Theorem 7.6], Miyaoka [13, Theorem 1.1], Kobayashi [6, Theorem 2; 7, Theorem 12], Wahl [18, Main Theorem] and Megyesi [10, Theorem 10.14; 11, Theorem 0.1].In [8] we introduced Chern classes of reflexive sheaves, using Wahl's local Chern classes of vector bundles on resolutions of surface singularities. Here we apply them to obtain the following generalization of the Bogomolov–Miyaoka–Yau inequality.


Author(s):  
Alice Garbagnati

Abstract We discuss the birational geometry and the Kodaira dimension of certain varieties previously constructed by Schreieder, proving that in any dimension they admit an elliptic fibration and they are not of general type. The $l$-dimensional variety $Y_{(n)}^{(l)}$, which is the quotient of the product of a certain curve $C_{(n)}$ by itself $l$ times by a group $G\simeq \left ({\mathbb{Z}}/n{\mathbb{Z}}\right )^{l-1}$ of automorphisms, was constructed by Schreieder to obtain varieties with prescribed Hodge numbers. If $n=3^c$ Schreieder constructed an explicit smooth birational model of it, and Flapan proved that the Kodaira dimension of this smooth model is 1, if $c>1$; if $l=2$ it is a modular elliptic surface; if $l=3$ it admits a fibration in K3 surfaces. In this paper we generalize these results: without any assumption on $n$ and $l$ we prove that $Y_{(n)}^{(l)}$ admits many elliptic fibrations and its Kodaira dimension is at most 1. Moreover, if $l=2$, its minimal resolution is a modular elliptic surface, obtained by a base change of order $n$ on a specific extremal rational elliptic surface; if $l\geq 3$ it has a birational model that admits a fibration in K3 surfaces and a fibration in $(l-1)$-dimensional varieties of Kodaira dimension at most 0.


Author(s):  
Giorgio Ottaviani ◽  
Zahra Shahidi

AbstractThe first author with B. Sturmfels studied in [16] the variety of matrices with eigenvectors in a given linear subspace, called the Kalman variety. We extend that study from matrices to symmetric tensors, proving in the tensor setting the irreducibility of the Kalman variety and computing its codimension and degree. Furthermore, we consider the Kalman variety of tensors having singular t-tuples with the first component in a given linear subspace and we prove analogous results, which are new even in the case of matrices. Main techniques come from Algebraic Geometry, using Chern classes for enumerative computations.


Author(s):  
Junyan Cao ◽  
Henri Guenancia ◽  
Mihai Păun

Abstract Given a Kähler fiber space p : X → Y {p:X\to Y} whose generic fiber is of general type, we prove that the fiberwise singular Kähler–Einstein metric induces a semipositively curved metric on the relative canonical bundle K X / Y {K_{X/Y}} of p. We also propose a conjectural generalization of this result for relative twisted Kähler–Einstein metrics. Then we show that our conjecture holds true if the Lelong numbers of the twisting current are zero. Finally, we explain the relevance of our conjecture for the study of fiberwise Song–Tian metrics (which represent the analogue of KE metrics for fiber spaces whose generic fiber has positive but not necessarily maximal Kodaira dimension).


2013 ◽  
Vol 42 (3) ◽  
pp. 1111-1122 ◽  
Author(s):  
Indranil Biswas ◽  
Ajneet Dhillon
Keyword(s):  

2006 ◽  
Vol 17 (05) ◽  
pp. 619-631 ◽  
Author(s):  
THOMAS PETERNELL

This paper continues the study of non-general type subvarieties begun in a joint paper with Schneider and Sommese [14]. We prove uniruledness of a projective manifold containing a submanifold not of general type whose normal bundle has positivity properties and study moreover the rational quotient. We also relate the fundamental groups and a prove a cohomological criterion for a manifold to be rationally connected (weak version of a conjecture of Mumford).


Sign in / Sign up

Export Citation Format

Share Document