The Relation between the $\eta$-Invariant and the Spin Representation in Terms of the Selberg Zeta Function

Author(s):  
Masato Wakayama
2010 ◽  
Vol 225 (5) ◽  
pp. 2464-2516 ◽  
Author(s):  
Colin Guillarmou ◽  
Sergiu Moroianu ◽  
Jinsung Park

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Victoria Martin ◽  
Andrew Svesko

The heat kernel and quasinormal mode methods of computing 1-loop partition functions of spin ss fields on hyperbolic quotient spacetimes \mathbb{H}^{3}/\mathbb{Z}ℍ3/ℤ are related via the Selberg zeta function. We extend that analysis to thermal \text{AdS}_{2n+1}AdS2n+1 backgrounds, with quotient structure \mathbb{H}^{2n+1}/\mathbb{Z}ℍ2n+1/ℤ. Specifically, we demonstrate the zeros of the Selberg function encode the normal mode frequencies of spin fields upon removal of non-square-integrable modes. With this information we construct the 1-loop partition functions for symmetric transverse traceless tensors in terms of the Selberg zeta function and find exact agreement with the heat kernel method.


2019 ◽  
Vol 57 (1) ◽  
pp. 23-60
Author(s):  
Ksenia Fedosova ◽  
Julie Rowlett ◽  
Genkai Zhang

Abstract We give an explicit formula for the second variation of the logarithm of the Selberg zeta function, Z(s), on Teichmüller space. We then use this formula to determine the asymptotic behavior as $$\mathfrak {R}s \rightarrow \infty $$Rs→∞ of the second variation. As a consequence, for $$m \in {\mathbb {N}}$$m∈N, we obtain the complete expansion in m of the curvature of the vector bundle $$H^0(X_t, {\mathcal {K}}_t)\rightarrow t\in {\mathcal {T}}$$H0(Xt,Kt)→t∈T of holomorphic m-differentials over the Teichmüller space $${\mathcal {T}}$$T, for m large. Moreover, we show that this curvature agrees with the Quillen curvature up to a term of exponential decay, $$O(m^2 \mathrm{e}^{-l_0 m}),$$O(m2e-l0m), where $$l_0$$l0 is the length of the shortest closed hyperbolic geodesic.


Sign in / Sign up

Export Citation Format

Share Document