spin fields
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 35)

H-INDEX

37
(FIVE YEARS 2)

Author(s):  
Chun-Hung Chen ◽  
Hing Tong Cho ◽  
Anna Chrysostomou ◽  
Alan Cornell

Abstract While Hod's conjecture is demonstrably restrictive, the link he observed between black hole (BH) area quantisation and the large overtone ($n$) limit of quasinormal frequencies (QNFs) motivated intense scrutiny of the regime, from which an improved understanding of asymptotic quasinormal frequencies (aQNFs) emerged. A further outcome was the development of the ``monodromy technique", which exploits an anti-Stokes line analysis to extract physical solutions from the complex plane. Here, we use the monodromy technique to validate extant aQNF expressions for perturbations of integer spin, and provide new results for the aQNFs of half-integer spins within higher-dimensional Schwarzschild, Reissner-Nordstr{\"o}m, and Schwarzschild (anti-)de Sitter BH spacetimes. Bar the Schwarzschild anti-de Sitter case, the spin-1/2 aQNFs are purely imaginary; the spin-3/2 aQNFs resemble spin-1/2 aQNFs in Schwarzschild and Schwarzschild de Sitter BHs, but match the gravitational perturbations for most others. Particularly for Schwarzschild, extremal Reissner-Nordstr{\"o}m, and several Schwarzschild de Sitter cases, the application of $n \rightarrow \infty$ generally fixes $\mathbb{R}e \{ \omega \}$ and allows for the unbounded growth of $\mathbb{I}m \{ \omega \}$ in fixed quantities.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Eugenia Boffo ◽  
Peter Schupp

Abstract We study a deformation of a 2-graded Poisson algebra where the functions of the phase space variables are complemented by linear functions of parity odd velocities. The deformation is carried by a 2-form B-field and a bivector Π, that we consider as gauge fields of the geometric and non-geometric fluxes H, f, Q and R arising in the context of string theory compactification. The technique used to deform the Poisson brackets is widely known for the point particle interacting with a U(1) gauge field, but not in the case of non-abelian or higher spin fields. The construction is closely related to Generalized Geometry: with an element of the algebra that squares to zero, the graded symplectic picture is equivalent to an exact Courant algebroid over the generalized tangent bundle E ≅ TM ⊕ T∗M, and to its higher gauge theory. A particular idempotent graded canonical transformation is equivalent to the generalized metric. Focusing on the generalized differential geometry side we construct an action functional with the Ricci tensor of a connection on covectors, encoding the dynamics of a gravitational theory for a contravariant metric tensor and Q and R fluxes. We also extract a connection on vector fields and determine a non-symmetric metric gravity theory involving a metric and H-flux.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
N.G. Misuna

Abstract We construct an unfolded system for off-shell fields of arbitrary integer spin in 4d anti-de Sitter space. To this end we couple an on-shell system, encoding Fronsdal equations, to external Fronsdal currents for which we find an unfolded formulation. We present a reduction of the Fronsdal current system which brings it to the unfolded Fierz-Pauli system describing massive fields of arbitrary integer spin. Reformulating off-shell higher-spin system as the set of Schwinger–Dyson equations we compute propagators of higher-spin fields in the de Donder gauge directly from the unfolded equations. We discover operators that significantly simplify this computation, allowing a straightforward extraction of wave equations from an unfolded system.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Karim Benakli ◽  
Nathan Berkovits ◽  
Cassiano A. Daniel ◽  
Matheus Lize

Abstract Constructing a consistent four-dimensional Lagrangian for charged massive higher-spin fields propagating in an electromagnetic background is an open problem. In 1989, Argyres and Nappi used bosonic open string field theory to construct a Lagrangian for charged massive spin-2 fields in a constant electromagnetic background. In this paper, we use the four-dimensional hybrid formalism for open superstring field theory to construct a supersymmetric Lagrangian for charged massive spin-2 and spin-3/2 fields in a constant electromagnetic background. The hybrid formalism has the advantage over the RNS formalism of manifest $$ \mathcal{N} $$ N = 1 d=4 spacetime supersymmetry so that the spin-2 and spin-3/2 fields are combined into a single superfield and there is no need for picture-changing or spin fields.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Eric Perlmutter ◽  
Leonardo Rastelli ◽  
Cumrun Vafa ◽  
Irene Valenzuela

Abstract We formulate a series of conjectures relating the geometry of conformal manifolds to the spectrum of local operators in conformal field theories in d > 2 spacetime dimensions. We focus on conformal manifolds with limiting points at infinite distance with respect to the Zamolodchikov metric. Our central conjecture is that all theories at infinite distance possess an emergent higher-spin symmetry, generated by an infinite tower of currents whose anomalous dimensions vanish exponentially in the distance. Stated geometrically, the diameter of a non-compact conformal manifold must diverge logarithmically in the higher-spin gap. In the holographic context our conjectures are related to the Distance Conjecture in the swampland program. Interpreted gravitationally, they imply that approaching infinite distance in moduli space at fixed AdS radius, a tower of higher-spin fields becomes massless at an exponential rate that is bounded from below in Planck units. We discuss further implications for conformal manifolds of superconformal field theories in three and four dimensions.


2021 ◽  
pp. 115576
Author(s):  
I.L. Buchbinder ◽  
S.A. Fedoruk ◽  
A.P. Isaev
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1498
Author(s):  
Alexey S. Bychkov ◽  
Kirill A. Ushakov ◽  
Mikhail A. Vasiliev

In this paper, we present a complete proof of the so-called First On-Shell Theorem that determines dynamical content of the unfolded equations for free symmetric massless fields of arbitrary integer spin in any dimension and arbitrary integer or half-integer spin in four dimensions. This is achieved by calculation of the respective σ− cohomology both in the tensor language in Minkowski space of any dimension and in terms of spinors in AdS4. In the d-dimensional case Hp(σ−) is computed for any p and interpretation of Hp(σ−) is given both for the original Fronsdal system and for the associated systems of higher form fields.


2021 ◽  
pp. 2150175
Author(s):  
Hai-Bo Wei ◽  
Yi-Gu Chen ◽  
Hui Zheng ◽  
Zai-Dong Wang ◽  
Li-Qin Mi ◽  
...  

We obtain the wave equation of the perturbation theory governing massless fields of spin 0, 1/2, 1, 3/2 and 2 in accelerating Kerr–Newman–(anti-)de Sitter black holes. We show that the wave equation is separable and the radial and angular equations can both be transformed into Heun’s equation. We approximate Heun’s equation and analyze the solution of radial function near the event horizon. It is worth pointing out that all the field equations collapse to a unique equation which means it can provide a possible way for the analog research between the gravitational field and those other fields.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kirill Krasnov ◽  
Evgeny Skvortsov ◽  
Tung Tran

Abstract Higher Spin Gravities are scarce, but covariant actions for them are even scarcer. We construct covariant actions for contractions of Chiral Higher Spin Gravity that represent higher spin extensions of self-dual Yang-Mills and self-dual Gravity theories. The actions give examples of complete higher spin theories both in flat and (anti)-de Sitter spaces that feature gauge and gravitational interactions. The actions are based on a new description of higher spin fields, whose origin can be traced to early works on twistor theory. The new description simplifies the structure of interactions. In particular, we find a covariant form of the minimal gravitational interaction for higher spin fields both in flat and anti-de Sitter space, which resolves some of the puzzles in the literature.


Sign in / Sign up

Export Citation Format

Share Document