scholarly journals Operator Algebras, Topology and Subgroups of Quantum Symmetry – Construction of Subgroups of Quantum Groups –

Author(s):  
Adrian Ocneanu
2018 ◽  
Vol 61 (4) ◽  
pp. 848-864 ◽  
Author(s):  
Simon Schmidt ◽  
Moritz Weber

AbstractThe study of graph C*-algebras has a long history in operator algebras. Surprisingly, their quantum symmetries have not yet been computed. We close this gap by proving that the quantum automorphism group of a finite, directed graph without multiple edges acts maximally on the corresponding graph C*-algebra. This shows that the quantum symmetry of a graph coincides with the quantum symmetry of the graph C*-algebra. In our result, we use the definition of quantum automorphism groups of graphs as given by Banica in 2005. Note that Bichon gave a different definition in 2003; our action is inspired from his work. We review and compare these two definitions and we give a complete table of quantum automorphism groups (with respect to either of the two definitions) for undirected graphs on four vertices.


Author(s):  
Thomas Creutzig ◽  
Matthew Rupert

We construct families of commutative (super) algebra objects in the category of weight modules for the unrolled restricted quantum group [Formula: see text] of a simple Lie algebra [Formula: see text] at roots of unity, and study their categories of local modules. We determine their simple modules and derive conditions for these categories being finite, non-degenerate, and ribbon. Motivated by numerous examples in the [Formula: see text] case, we expect some of these categories to compare nicely to categories of modules for vertex operator algebras. We focus in particular on examples expected to correspond to the higher rank triplet vertex algebra [Formula: see text] of Feigin and Tipunin and the [Formula: see text] algebras.


2019 ◽  
Vol 41 (2) ◽  
pp. 593-605
Author(s):  
RYOSUKE SATO

The notion of quantized characters was introduced in our previous paper as a natural quantization of characters in the context of asymptotic representation theory for quantum groups. As in the case of ordinary groups, the representation associated with any extreme quantized character generates a von Neumann factor. From the viewpoint of operator algebras (and measurable dynamical systems), it is natural to ask what is the Murray–von Neumann–Connes type of the resulting factor. In this paper, we give a complete solution to this question when the inductive system is of quantum unitary groups $U_{q}(N)$.


Author(s):  
Simeng Wang

We introduce the notion of noncommutative complex spheres with partial commutation relations for the coordinates. We compute the corresponding quantum symmetry groups of these spheres, and this yields new quantum unitary groups with partial commutation relations. We also discuss some geometric aspects of the quantum orthogonal groups associated with the mixture of classical and free independence discovered by Speicher and Weber. We show that these quantum groups are quantum symmetry groups on some quantum spaces of spherical vectors with partial commutation relations.


Sign in / Sign up

Export Citation Format

Share Document