scholarly journals Vector-valued holomorphic functions on a complex space

1965 ◽  
Vol 17 (1) ◽  
pp. 52-66 ◽  
Author(s):  
Hirotaka FUJIMOTO
2000 ◽  
Vol 234 (4) ◽  
pp. 777-805 ◽  
Author(s):  
W. Arendt ◽  
N. Nikolski

2016 ◽  
Vol 3 (1) ◽  
pp. 68-76
Author(s):  
Wolfgang Arendt

AbstractHolomorphic and harmonic functions with values in a Banach space are investigated. Following an approach given in a joint article with Nikolski [4] it is shown that for bounded functions with values in a Banach space it suffices that the composition with functionals in a separating subspace of the dual space be holomorphic to deduce holomorphy. Another result is Vitali’s convergence theorem for holomorphic functions. The main novelty in the article is to prove analogous results for harmonic functions with values in a Banach space.


Author(s):  
Karsten Kruse

AbstractThis paper is dedicated to the question of surjectivity of the Cauchy-Riemann operator $$\overline{\partial }$$ ∂ ¯ on spaces $${\mathcal {E}}{\mathcal {V}}(\varOmega ,E)$$ E V ( Ω , E ) of $${\mathcal {C}}^{\infty }$$ C ∞ -smooth vector-valued functions whose growth on strips along the real axis with holes K is induced by a family of continuous weights $${\mathcal {V}}$$ V . Vector-valued means that these functions have values in a locally convex Hausdorff space E over $${\mathbb {C}}$$ C . We derive a counterpart of the Grothendieck-Köthe-Silva duality $${\mathcal {O}}({\mathbb {C}}\setminus K)/{\mathcal {O}}({\mathbb {C}})\cong {\mathscr {A}}(K)$$ O ( C \ K ) / O ( C ) ≅ A ( K ) with non-empty compact $$K\subset {\mathbb {R}}$$ K ⊂ R for weighted holomorphic functions. We use this duality and splitting theory to prove the surjectivity of $$\overline{\partial }:{\mathcal {E}} {\mathcal {V}}(\varOmega ,E)\rightarrow {\mathcal {E}}{\mathcal {V}} (\varOmega ,E)$$ ∂ ¯ : E V ( Ω , E ) → E V ( Ω , E ) for certain E. This solves the smooth (holomorphic, distributional) parameter dependence problem for the Cauchy-Riemann operator on $${\mathcal {E}}{\mathcal {V}}(\varOmega ,{\mathbb {C}})$$ E V ( Ω , C ) .


Sign in / Sign up

Export Citation Format

Share Document