Interpolation and amalgamation in modal cylindric algebras

2019 ◽  
Vol 43 (9) ◽  
pp. 1209-1238
Author(s):  
Tarek Sayed Ahmed
Keyword(s):  
2000 ◽  
Vol 65 (2) ◽  
pp. 857-884 ◽  
Author(s):  
Gábor Sági

AbstractHere we investigate the classes of representable directed cylindric algebras of dimension α introduced by Németi [12]. can be seen in two different ways: first, as an algebraic counterpart of higher order logics and second, as a cylindric algebraic analogue of Quasi-Projective Relation Algebras. We will give a new, “purely cylindric algebraic” proof for the following theorems of Németi: (i) is a finitely axiomatizable variety whenever α ≥ 3 is finite and (ii) one can obtain a strong representation theorem for if one chooses an appropriate (non-well-founded) set theory as foundation of mathematics. These results provide a purely cylindric algebraic solution for the Finitization Problem (in the sense of [11]) in some non-well-founded set theories.


1969 ◽  
Vol 34 (3) ◽  
pp. 331-343 ◽  
Author(s):  
J. Donald Monk

Cylindric algebras were introduced by Alfred Tarski about 1952 to provide an algebraic analysis of (first-order) predicate logic. With each cylindric algebra one can, in fact, associate a certain, in general infinitary, predicate logic; for locally finite cylindric algebras of infinite dimension the associated predicate logics are finitary. As with Boolean algebras and sentential logic, the algebraic counterpart of completeness is representability. Tarski proved the fundamental result that every locally finite cylindric algebra of infinite dimension is representable.


1998 ◽  
Vol 63 (4) ◽  
pp. 1201-1217
Author(s):  
Norman Feldman

In this paper we consider the three-valued logic used by Kleene [6] in the theory of partial recursive functions. This logic has three truth values: true (T), false (F), and undefined (U). One interpretation of U is as follows: Suppose we have two partially recursive predicates P(x) and Q(x) and we want to know the truth value of P(x) ∧ Q(x) for a particular x0. If x0 is in the domain of definition of both P and Q, then P(x0) ∧ Q(x0) is true if both P(x0) and Q(x0) are true, and false otherwise. But what if x0 is not in the domain of definition of P, but is in the domain of definition of Q? There are several choices, but the one chosen by Kleene is that if Q(X0) is false, then P(x0) ∧ Q(x0) is also false and if Q(X0) is true, then P(x0) ∧ Q(X0) is undefined.What arises is the question about knowledge of whether or not x0 is in the domain of definition of P. Is there an effective procedure to determine this? If not, then we can interpret U as being unknown. If there is an effective procedure, then our decision for the truth value for P(x) ∧ Q(x) is based on the knowledge that is not in the domain of definition of P. In this case, U can be interpreted as undefined. In either case, we base our truth value of P(x) ∧ Q(x) on the truth value of Q(X0).


Studia Logica ◽  
2007 ◽  
Vol 87 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Miklós Ferenczi

Sign in / Sign up

Export Citation Format

Share Document