scholarly journals THE STUDY OF VEGETATIVE INCOMPATIBILITY STRAINS OF BASIDIOMYCETES

Author(s):  
Oleh Fedotov ◽  
◽  
Zinaida Usikova ◽  
Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Qijun Xiang ◽  
N Louise Glass

AbstractA non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isolated mutants that suppressed phenotypic aspects of het-c vegetative incompatibility. Three deletion mutants were identified; the deletions overlapped each other in an ORF named vib-1 (vegetative incompatibility blocked). Mutations in vib-1 fully relieved growth inhibition and repression of conidiation conferred by het-c vegetative incompatibility and significantly reduced hyphal compartmentation and death rates. The vib-1 mutants displayed a profuse conidiation pattern, suggesting that VIB-1 is a regulator of conidiation. VIB-1 shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. Native gel analysis of wild-type strains and vib-1 mutants indicated that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 71-81
Author(s):  
Eric Espagne ◽  
Pascale Balhadère ◽  
Marie-Louise Penin ◽  
Christian Barreau ◽  
Béatrice Turcq

Abstract Vegetative incompatibility, which is very common in filamentous fungi, prevents a viable heterokaryotic cell from being formed by the fusion of filaments from two different wild-type strains. Such incompatibility is always the consequence of at least one genetic difference in specific genes (het genes). In Podospora anserina, alleles of the het-e and het-d loci control heterokaryon viability through genetic interactions with alleles of the unlinked het-c locus. The het-d2Y gene was isolated and shown to have strong similarity with the previously described het-e1A gene. Like the HET-E protein, the HET-D putative protein displayed a GTP-binding domain and seemed to require a minimal number of 11 WD40 repeats to be active in incompatibility. Apart from incompatibility specificity, no other function could be identified by disrupting the het-d gene. Sequence comparison of different het-e alleles suggested that het-e specificity is determined by the sequence of the WD40 repeat domain. In particular, the amino acids present on the upper face of the predicted β-propeller structure defined by this domain may confer the incompatible interaction specificity.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 633-641
Author(s):  
Christina A Muirhead ◽  
N Louise Glass ◽  
Montgomery Slatkin

Abstract Trans-species polymorphism, meaning the presence of alleles in different species that are more similar to each other than they are to alleles in the same species, has been found at loci associated with vegetative incompatibility in filamentous fungi. If individuals differ at one or more of these loci (termed het for heterokaryon), they cannot form stable heterokaryons after vegetative fusion. At the het-c locus in Neurospora crassa and related species there is clear evidence of trans-species polymorphism: three alleles have persisted for ∼30 million years. We analyze a population genetic model of multilocus vegetative incompatibility and find the conditions under which trans-species polymorphism will occur. In the model, several unlinked loci determine the vegetative compatibility group (VCG) of an individual. Individuals of different VCGs fail to form productive heterokaryons, while those of the same VCG form viable heterokaryons. However, viable heterokaryon formation between individuals of the same VCG results in a loss in fitness, presumably via transfer of infectious agents by hyphal fusion or exploitation by aggressive genotypes. The result is a form of balancing selection on all loci affecting an individual's VCG. We analyze this model by making use of a Markov chain/strong selection, weak mutation (SSWM) approximation. We find that trans-species polymorphism of the type that has been found at the het-c locus is expected to occur only when the appearance of new incompatibility alleles is strongly constrained, because the rate of mutation to such alleles is very low, because the number of possible incompatibility alleles at each locus is restricted, or because the number of incompatibility loci is limited.


Genetics ◽  
2002 ◽  
Vol 160 (1) ◽  
pp. 169-180
Author(s):  
Qijun Xiang ◽  
Carolyn Rasmussen ◽  
N Louise Glass

Abstract Somatic cell fusion is common during organogenesis in multicellular eukaryotes, although the molecular mechanism of cell fusion is poorly understood. In filamentous fungi, somatic cell fusion occurs during vegetative growth. Filamentous fungi grow as multinucleate hyphal tubes that undergo frequent hyphal fusion (anastomosis) during colony expansion, resulting in the formation of a hyphal network. The molecular mechanism of the hyphal fusion process and the role of networked hyphae in the growth and development of these organisms are unexplored questions. We use the filamentous fungus Neurospora crassa as a model to study the molecular mechanism of hyphal fusion. In this study, we identified a deletion mutant that was restricted in its ability to undergo both self-hyphal fusion and fusion with a different individual to form a heterokaryon. This deletion mutant displayed pleiotropic defects, including shortened aerial hyphae, altered conidiation pattern, female sterility, slow growth rate, lack of hyphal fusion, and suppression of vegetative incompatibility. Complementation with a single open reading frame (ORF) within the deletion region in this mutant restored near wild-type growth rates, female fertility, aerial hyphae formation, and hyphal fusion, but not vegetative incompatibility and wild-type conidiation pattern. This ORF, which we named ham-2 (for hyphal anastomosis), encodes a putative transmembrane protein that is highly conserved, but of unknown function among eukaryotes.


1994 ◽  
Vol 10 (12) ◽  
pp. 441-446 ◽  
Author(s):  
Joel Bégueret ◽  
Béatrice Turcq ◽  
Corinne Clavé

2017 ◽  
Vol 28 ◽  
pp. 11-24 ◽  
Author(s):  
Clive Brasier ◽  
Kevin King ◽  
Thomas Kirisits ◽  
Elizabeth Orton ◽  
Joan Webber

Sign in / Sign up

Export Citation Format

Share Document